主页 搜寻 网站地图 联系方式
Report, Repeat and Revise™
...Worldwide
 
资源中心    

非酒精性脂肪肝

Download PDF

篇简短的科学文献综述,写于2008年11月
作者为Matthew R. Ricci,博士,RDI副主席兼科学主任。

非酒精性脂肪肝是一定范围内的疾病状态,包括从脂肪变性(脂肪肝)到非酒精性脂肪性肝炎(又称NASH;伴随炎症变化的脂肪变性),其后进展为肝纤维化,肝硬化和肝癌(1)。过量肝脂肪被认为是代谢综合征的一种表现(2),而且毫不奇怪地,NASH也与人类肥胖症,胰岛素拮抗,血脂异常,Ⅱ型糖尿病有关(3)。大多数肥胖的成年人有脂肪肝,至少三分之一的这些人最终将发展成恶化脂肪肝(4,5),因此,非酒精性脂肪肝患病率很可能会随肥胖率上升。

与很多由膳食导致的疾病一样,啮齿目动物的脂肪肝也可以由膳食诱导。有不同的膳食方式(不同的机制)可供选择,因此研究人员应该知道每种方式的优点和缺点。在这里,我们简要地总结诱导脂肪肝的三个方案:喂食蛋氨酸和胆碱缺乏(MCD)饲料、胆碱缺乏饲料(CD)或高脂肪饲料(HFD)。当然,这些方案并没有定义具体的饲料配方,研究人员应该知道每类饲料都有很多的变化,而这些变化会对动物的表型产生不同的影响。

 

 

 


RDI的产品被广泛应用于实验动物脂肪肝病症的研究。我们的开源配方定制饲料可以为您的动物模型诱导疾病表型的表达,以满足您具体研究的需要。

请与我们的资源中心联系 以获取多年的产品经验以及非酒精性脂肪肝研究领域的文献。请让我们为您生产适合您研究需要的饲料。

   
 

蛋氨酸和胆碱缺乏饲料
蛋氨酸和胆碱缺乏(MCD)饲料已被用于研究肝脏疾病超过40年。喂食蛋氨酸和胆碱缺乏饲料的啮齿目动物将在2-4个星期内发展出显著脂肪肝然后迅速演变为的炎症和纤维化 (6,7)。蛋氨酸和胆碱缺乏饲料诱导脂肪肝的机制在于磷脂酰胆碱合成不足引起的极低密度脂蛋白的分泌障碍(8)。重要的是,不像人类和其他膳食诱导非酒精性脂肪肝啮齿目动物模型,喂食MCD饲料的啮齿目动物会减去体重(由于大大降低的热量摄入量),不发生胰岛素拮抗(9,10)。这与人类典型的非酒精性脂肪性肝炎患者的情况相反,他们不但肥胖而且对胰岛素拮抗。蛋氨酸和胆碱缺乏饲料中的脂肪来源可以改变表型。通过使用多不饱和脂肪膳食来源,肝脏脂肪氧化、炎症和炎症基因的诱导可被增加(相对于含更饱和脂肪膳食),虽然这并不必然导致肝脏损伤的增加(11)。在另一个不同的研究中,橄榄油减少肝脏的TAG的积累而鱼油则降低肝脏胆固醇水平(12)。

胆碱缺乏饲料
胆碱缺乏饲料提供的潜在优势在于:他们增加肝脏脂肪水平,增加体重,导致血脂异常和胰岛素拮抗 (13),在这些方面,它们并不像蛋氨酸和胆碱缺乏饲料。肝脂肪的积累所涉及的机制可能与蛋氨酸和胆碱缺乏饲料的也不一样(14),肝脏脂肪堆积、肝脏损伤和炎症并没有蛋氨酸和胆碱缺乏饲料引起的严重(13)。有趣的是,胆碱缺乏在高脂膳食中能改善小鼠的葡萄糖耐受(15)。

高脂饲料
众所周知高脂饲料可以为啮齿目动物模型增加体重、体脂肪和导致胰岛素拮抗。高脂饲料也可以相当迅速地(以天计算)在周边脂肪沉积发生显着上升前增加肝脏脂肪水平(16)。如此迅速的肝脏脂肪堆积是与肝胰岛素拮抗相关联的(16)。长期来说,高脂饲料诱导的肝脏脂肪堆积可能不遵循线性进展而且肝脏脂肪含量实际上可能减少,然后在长时间的高脂喂养下增加(17)。如果喂食的时间一致,高脂饲料喂养比蛋氨酸和胆碱缺乏饲料喂养得到10倍更低的肝脏脂肪水平(18)累积。一般来说,高脂饲料喂养与蛋氨酸和胆碱缺乏饲料喂养相比不产生肝纤维化,且只有轻微脂肪肝(3)。

在最近的糖尿病的研究方面,Raubenheimer等人用胆碱缺乏和高脂饲料组合来调查肝脏脂肪过剩对伴随膳食诱导肥胖症的胰岛素拮抗和糖耐量的影响(15)。C57Bl/6 小鼠被喂食有胆碱或无胆碱的高脂或低脂饲料。胆碱缺乏并不影响体重增加或脂肪组织的重量,但在高脂和低脂组都提升了肝脏甘油三酯的水平。对照高脂饲料增加了实验动物体重以及空腹胰岛素和葡萄糖水平(相对于对照低脂饲料喂养动物来说),这表明小鼠正逐渐呈现胰岛素拮抗。有趣的是,喂食胆碱缺乏高脂饲料的小鼠与喂食含胆碱高脂的相比具有更低的胰岛素水平。此外,喂食胆碱缺乏高脂饲料的小鼠比喂食含胆碱高脂的小鼠改善了糖耐量。这些研究人员还发现,胆碱缺乏在高脂膳食的条件下诱导涉及将游离脂肪酸酯化为三酰甘油的肝酶基因的表达,而脂肪酸合成和氧化有关的酶基因的表达则没有改变。

作者们的结论是,脂肪酸转化为肝脏甘油三酯储存可能只是一个初步的保护机制,以降低肝细胞内的脂肪酸含量。由于细胞内的脂肪酸升高被认为是肝胰岛素拮抗的部分原因,它们作为甘油三酯储存将有助于维持肝胰岛素敏感性。长期喂食胆碱缺乏高脂饲料最终是否会导致胰岛素拮抗则仍然未知。

Reference List
1.   Zafrani ES. Non-alcoholic fatty liver disease: an emerging pathological spectrum. Virchows Arch 444: 3-12, 2004.
2.   Marchesini G and Babini M. Nonalcoholic fatty liver disease and the metabolic syndrome. Minerva Cardioangiol 54: 229-239, 2006.
3.   Anstee QM and Goldin RD. Mouse models in non-alcoholic fatty liver disease and steatohepatitis research. Int J Exp Pathol 87: 1-16, 2006.
4.   Adams LA, Lymp JF, St Sauver J, Sanderson SO, Lindor KD, Feldstein A and Angulo P. The natural history of nonalcoholic fatty liver disease: a population-based cohort study. Gastroenterology 129: 113-121, 2005.
5.   Browning JD, Szczepaniak LS, Dobbins R, Nuremberg P, Horton JD, Cohen JC, Grundy SM and Hobbs HH. Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology 40: 1387-1395, 2004.
6.   Sahai A, Malladi P, Melin-Aldana H, Green RM and Whitington PF. Upregulation of osteopontin expression is involved in the development of nonalcoholic steatohepatitis in a dietary murine model. Am J Physiol Gastrointest Liver Physiol 287: G264-G273, 2004.
7.   Weltman MD, Farrell GC and Liddle C. Increased hepatocyte CYP2E1 expression in a rat nutritional model of hepatic steatosis with inflammation. Gastroenterology 111: 1645-1653, 1996.
8.   Yao ZM and Vance DE. Reduction in VLDL, but not HDL, in plasma of rats deficient in choline. Biochem Cell Biol 68: 552-558, 1990.
9.   Kirsch R, Clarkson V, Shephard EG, Marais DA, Jaffer MA, Woodburne VE, Kirsch RE and Hall PL. Rodent nutritional model of non-alcoholic steatohepatitis: species, strain and sex difference studies. J Gastroenterol Hepatol 18: 1272-1282, 2003.
10.   Rinella ME and Green RM. The methionine-choline deficient dietary model of steatohepatitis does not exhibit insulin resistance. J Hepatol 40: 47-51, 2004.
11.   Lee GS. Yan, JS, Ng RK, Kakar S and Maher JJ.  Polyunsaturated fat in the methionine-choline-deficient diet influences hepatic inflammation but not hepatocellular injury.  J Lipid Res 48:1885-1896, 2007.
12.   Hussein O, Grosovski M, Lasri E, Svlab S, Ravid U and Assy N.  Monounsaturated fat decreases hepatic lipid contgent in non-alcoholic fatty liver disease in rats. World J Gastroenterol  13: 361-38, 2007.
13.   Vetelainen R, van Vliet A, and can Gulik TM.  Essential pathogenic and metabolic differences in steatosis induced by choline or methionine-choline deficient diets in a rat model.  J Gastroenterol Hepatol  22:1526-1533, 2007.
14.   Kulinski A, Vance DE and Vance JE. A choline-deficient diet in mice inhibits neither the CDP-choline pathway for phosphatidylcholine synthesis in hepatocytes nor apolipoprotein B secretion. J Biol Chem 279: 23916-23924, 2004.

15.   Raubenheimer PJ, Nyirenda MJ and Walker BR. A choline-deficient diet exacerbates fatty liver but attenuates insulin resistance and glucose intolerance in mice fed a high-fat diet. Diabetes 55: 2015-2020, 2006.
16.   Samuel VT, Liu ZX, Qu X, Elder BD, Bilz S, Befroy D, Romanelli AJ and Shulman GI. Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. J Biol Chem 279: 32345-32353, 2004.
17.   Gauthier MS, Favier R and Lavoie JM. Time course of the development of non-alcoholic hepatic steatosis in response to high-fat diet-induced obesity in rats. Br J Nutr 95: 273-281, 2006.

18.   Romestaing C, Piquet MA, Bedu E, Rouleau V, Dautresme M, Hourmand-Ollivier I, Filippi C, Duchamp C, and Sibille B. Long term highly saturated fat diet does not induce NASH in Wistar rats.  Nutr Metab  21:4:4, 2007.

 

     
               
Where Nutriphenomics® Begins