主页 搜寻 网站地图 联系方式
Report, Repeat and Revise™
...Worldwide
 
资源中心      

糖尿病/胰岛素拮抗

Download PDF
   

篇简短的科学文献综述
用于诱导啮齿目动物高甘油三酯血症的高果糖/蔗糖饲料
作者:Vikas V. Surve 博士为RDI咨询科学家

最近由于蔗糖和高果糖玉米糖浆被大量用于加工食品如饮料,果酱,果冻,烘焙食品和乳制品,对它们的消费急剧增加。高果糖玉米糖浆价格低廉且比蔗糖更甜更可口,因此正在迅速取代加工食品中的蔗糖。有人认为这会引起人类暴饮暴食。

在过去几十年里,我们已经认识到精制碳水化合物如玉米糖浆和蔗 糖的二糖(由果糖和葡萄糖组成)摄入量的增加,,与人类和老鼠的高血压,肥胖,糖尿病,肾脏疾病和心血管疾病有关(3-6,7,8-14)。果糖这些对健康有害的影响可以归因于如何果糖 的摄入后代谢。经过胃肠道吸收,果糖通过静脉循环输送到肝脏,在那里通过的葡萄糖转运体GLUT5进入肝细胞,该代谢过程迅速且独立于胰岛素的控制(15,16)。此外,肝脏的磷酸果糖激酶是控制肝糖酵解的关键,它可以对葡萄糖的降解进行负调控,而果糖却可以脱离该限速调控机制而被分解成三磷酸甘油和乙酰辅酶A。这两种中间代谢物可被用作甘油酯合成底物,从而促进极低密度脂蛋白(VLDL)甘油三酯在肝脏中的生产(3,7)。

 

 

RDI的产品被广泛应用于实验动物糖尿病和胰岛素拮抗研究。我们的开源配方定制饲料可以为您的动物模型诱导疾病表型的表达,以满足您具体研究的需要。

请与我们的资源中心联系 以获取多年的产品经验以及糖尿病和胰岛素拮抗领域的文献。请让我们为您生产适合您研究需要的饲料。


 
 

再者,由于在β细胞中没有GLT5的表达,果糖不像葡萄糖一样可以刺激胰岛素的释放(16)。大量果糖在肝脏的堆积导致快速的脂肪生成和甘油三酯的积累,从而反过来又降低了胰岛素的敏感度并促进了肝脏胰岛素拮抗和糖耐量(3)。最近的一项研究成果表明果糖不能刺激胰岛素和瘦素的分泌且会减轻餐后ghrelin的抑制作用,据此人们怀疑长期摄入大量的果糖会导致热量摄入量的增加和促进体重增加和肥胖(17)。

大鼠模型
对啮齿动物来说, 高果糖膳食可在Sprague-Dawley (SD)大鼠 (8-10), Wistar 大鼠 (11, 12)和仓鼠(13, 14)中引起高甘油三酯血症,胰岛素拮抗和高血压。SD (18) 和Wistar大鼠 (19)都是已设立的蔗糖诱导胰岛素拮抗和高甘油三酯血症模型。当这些动物饲喂高达65%(重量比)蔗糖(相对于65%玉米淀粉)的饲料时,症状可以在短短2周内显现。研究已证明,导致代谢综合征的高蔗糖膳食中的活跃成分是果糖而非葡萄糖;同等数量的葡萄糖或淀粉并不会诱导这些症状(20-22)。除非长时间使用,这些高糖饲料并不会引起过多的体重増加(11)。

除了诱导代谢综合征之外,高果糖膳食还会在SD大鼠中引起肾脏肥大、传入小动脉增厚、肾小球高血压、皮质血管收缩等症状(23)。SD大鼠食用60%果糖饲料10周后便呈现出高甘油三酯血症、高胰岛素血症和更有甚者,高尿酸血症(20)。尿酸一直被人们认为在代谢综合征的发生中有一席之地,它可以抑制一氧化氮生物利用度,而一氧化氮在胰岛素刺激葡萄糖摄取的过程中是必须的。在摄取高果糖的动物中降低尿酸可以防止或逆转代谢综合征的某些症状如高胰岛素血症、收缩期高血压、高甘油三酯血症和体重增加(20)。此外,Shapiro等人最近证明,长期喂食果糖可在SD大鼠中诱导瘦素拮抗和加速高脂诱导肥胖症的发生(24)。与SD大鼠相近,以66%果糖饲料喂养超过10个星期的Wistar大鼠显示了上升收缩压和舒张压、脉压(血管硬度指数之一)增大等症状(12)。在高果糖饲料中加入长链(n - 3)多不饱和脂肪酸后,代谢和血管障碍消失(12)。

仓鼠模型
叙利亚金黄仓鼠(Mesocricetus auratus)是一种广泛使用脂蛋白研究模型,由于仓鼠血浆中胆固醇的主要载体是LDL(不同于大鼠),其脂蛋白代谢似乎与人类的最为相近(25)。仓鼠在食用高果糖饲料的情况下可发展高胰岛素血症、高甘油三酯血症和胰岛素拮抗等症状(13)。与大鼠相似,食用高果糖私饲料(60%能量)的仓鼠可以在2周内就表现出这些症状(13,14)。由于其肝脏高血浆脂蛋白生产过剩,以果糖喂养的仓鼠模型具有高水平的极低密度脂蛋白和载脂蛋白B的特征(14)。有趣的是,与那些食用高果糖饲料的仓鼠比较,食用高蔗糖饲料的仓鼠并无高水平的甘油三酯,且只表现出轻微胰岛素拮抗(13)。蔗糖只有一半是果糖,由此看来,仓鼠膳食中的果糖水平对胰岛素拮抗和高甘油三酯的快速发生是非常重要的。

小鼠模型
与大鼠和仓鼠相反,小鼠模型在蔗糖/果糖诱导胰岛素拮抗和高甘油三酯的研究中并不常用。小鼠对高蔗糖/果糖的反应各品系不一(26)。那些常用的品系如C57B1/6 小鼠要么不发展胰岛素拮抗,要么发展得很慢(27)。当C57Bl/6 小鼠和 Wistar 大鼠同样被高果糖灌胃3周后,C57Bl/6 小鼠与Wistar大鼠相比有更低水平的血浆甘油三酯和胆固醇,呈现出一个被认为对心血管系统更健康的生化轮廓(28)。另一方面,当 C57/BL6小鼠喂饲高果糖膳食8周后,他们呈现出平均动脉压上升、葡萄糖耐受性降低和血浆胆固醇增加等症状,这些症状的发生归因于是由于交感系统和血管紧张素系统的激活(29)。此外,Cunha等人发现,C57/BL6小鼠高果糖喂养12周后会产生肾功能损害,具体症状为尿蛋白和尿排泄量的增加(30)。然而,小鼠基因组比起大鼠的更容易操作,几个基因敲除模型(容易产生动脉粥样硬化)也对高果糖膳食产生甘油三酯升高的反应(31)。

因此,具体根据所选择的啮齿目动物模型而定,高果糖/糖膳食可复制人类代谢综合征的某几个方面,如高甘油三酯血症、高血压和高胰岛素血症。

 

References:
1. Yudkin J. Evolutionary and historical changes in dietary carbohydrates. Am J Clin Nutr 20:108-115, 1967.
2.  Bray GA, Nielsen SJ, and Popkin BM. Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. Am J Clin Nutr 79: 537-543, 2004.
3.  Basciano H, Federico L, and Adeli K. Fructose, insulin resistance, and metabolic dyslipidemia. Nutr Metab (Lond) 2: 5, 2005.
4. Havel PJ. Dietary fructose: implications for dysregulation of energy homeostasis and lipid/carbohydrate metabolism. Nutr Rev 63: 133-157, 2005.
5. Johnson RJ, Segal MS, Sautin Y, Nakagawa T, Feig DI, Kang DH, Gersch MS, Benner S, and Sanchez-Lozada LG. Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease. Am J Clin Nutr 86:899-906, 2007.
6. Elliott SS, Keim NL, Stern JS, Teff K, Havel PJ. Fructose, weight gain, and the insulin resistance syndrome. Am J Clin Nutr 76:911-922, 2002.
7. Qu S, Su D, Altomonte J, Kamagate A, He J, Perdomo G, Tse T, Jiang Y, Dong HH. PPAR{alpha} mediates the hypolipidemic action of fibrates by antagonizing FoxO1. Am J Physiol Endocrinol Metab 2007;292:421-434.
8. Zavaroni I, Sander S, Scott S, Reaven GM. Effect of fructose feeding on insulin secretion and insulin action in the rat. Metabolism 29(10):970-973,1980.
9.  Hwang IS, Ho H, Hoffman BB, Reaven GM. Fructose-induced insulin resistance and hypertension in rats. Hypertension 10:512–516, 1987.
10.  Sleder J, Chen,YD, Cully MD, Reaven GM. Hyperinsulinemia in fructose-induced hypertriglyceridemia in the rat. Metabolism 29:303-305, 1980.
11.  Chicco A, D'Alessandro ME, Karabatas L, Pastorale C, Basabe JC, Lombardo YB. Muscle lipid metabolism and insulin secretion are altered in insulin-resistant rats fed a high sucrose diet. J Nutr. 133:127-133, 2003.
12.  Robbez Masson V, Lucas A, Gueugneau AM, Macaire JP, Paul JL, Grynberg A, Rousseau D. Long-chain (n-3) polyunsaturated fatty acids prevent metabolic and vascular disorders in fructose-fed rats. J Nutr 138(10):1915-1922, 2008.
13.  Kasim-Karakas SE, Vriend H, Almario R, Chow LC, Goodman MN. Effects of dietary carbohydrates on glucose and lipid metabolism in golden Syrian hamsters J Lab Clin Med 128: 208–213, 1996.
14.  Taghibiglou C, Carpentier A, Van Iderstine SC, Chen B, Rudy D, Aiton A, Lewis GF, Adeli K. Mechanisms of hepatic very low density lipoprotein overproduction in insulin resistance. Evidence for enhanced lipoprotein assembly, reduced intracellular ApoB degradation, and increased microsomal triglyceride transfer protein in a fructose-fed hamster model. J Biol Chem 275:8416-8425, 2000.
15.  Smith Jr LH, Ettinger RH, Seligson D. A comparison of the metabolism of fructose and glucose in hepatic disease and diabetes mellitus. J Clin Invest 32:273-282, 1953.
16. Sato Y, Ito T, Udaka N, Kanisawa M, Noguchi Y, Cushman SW, Satoh S. Immunohistochemical localization of facilitated-diffusion glucose transporters in rat pancreatic islets. Tissue Cell 28:637-643, 1996.
17. Teff KL, Elliott SS, Tschop M, Kieffer TJ, Rader D, Heiman M, Townsend RR, Keim NL, D'Alessio D, and Havel PJ. Dietary fructose reduces circulating insulin and leptin, attenuates postprandial suppression of ghrelin, and increases triglycerides in women. J Clin Endocrinol Metab 89: 2963-2972, 2004.
18.  Pagliassotti MJ, Prach PA, Koppenhafer TA, Pan DA. Changes in insulin action, triglycerides, and lipid composition during sucrose feeding in rats. Am J Physiol 271:1319-1326, 1996.
19.  Pagliassotti MJ, Gayles EC, Podolin DA, Wei Y, Morin CL. Developmental stage modifies diet-induced peripheral insulin resistance in rats. Am J Physiol Regul Integr Comp Physiol 278: 66- 73, 2000.
20.  Nakagawa T, Hu H, Zharikov S, Tuttle KR, Short RA, Glushakova O, Ouyang X, Feig DI, Block ER, Herrera-Acosta J, Patel JM, Johnson RJ. A causal role for uric acid in fructose-induced metabolic syndrome. Am J Physiol Renal Physiol 290:625–631, 2006.
21. Thorburn AW, Storlien LH, Jenkins AB, Khouri S, Kraegen EW. Fructose-induced in vivo insulin resistance and elevated plasma triglyceride levels in rats. Am J Clin Nutr 49:1155-1163, 1989.
22.  Thresher JS, Podolin DA, Wei Y, Mazzeo RS, Pagliassotti MJ. Comparison of the effects of sucrose and fructose on insulin action and glucose tolerance. Am J Physiol Regul Integr Comp Physiol 279:R1334-R1340, 2000.
23. Sánchez-Lozada LG, Tapia E, Jiménez A, Bautista P, Cristóbal M, Nepomuceno T, Soto V, Avila-Casado C, Nakagawa T, Johnson RJ, Herrera-Acosta J, Franco M. Fructose-induced metabolic syndrome is associated with glomerular hypertension and renal microvascular damage in rats. Am J Physiol Renal Physiol 292:423–429, 2007.
24. Shapiro A, Mu W, Roncal CA, Cheng KY, Johnson RJ, Scarpace PJ. Fructose-Induced Leptin Resistance Exacerbates Weight Gain in Response to Subsequent High Fat Feeding. Am J Physiol Regul Integr Comp Physiol 2008.
25.  Sullivan MP, Cerda JJ, Robbins FL, Burgi, CW, Beatty RJ. The gerbil, hamster, and guinea pig as rodent models for hyperlipidemia. Lab Anim Sci 43: 575–578, 1993.
26.  Nagata R, Nishio Y, Sekine O, Nagai Y, Maeno Y, Ugi S, Maegawa H, Kashiwagi A. Single nucleotide polymorphism (- 468 Gly to A) at the promoter region of SREBP-1c associates with genetic defect of fructose-induced hepatic lipogenesis [corrected]. J Biol Chem 279:29031-29042, 2004.
27.  Sumiyoshi M, Sakanaka M, Kimura Y. Chronic intake of high fat and high-sucrose diets differentially affects glucose intolerance in mice. J Nutr 136:582-587, 2006.
28.  Barbosa CR, Albuquerque EM, Faria EC, Oliveira HC, Castilho LN. Opposite lipemic response of Wistar rats and C57BL/6 mice to dietary glucose or fructose supplementation. Braz J Med Biol Res 40(3):323-31, 2007.
29.  Farah V, Elased KM, Chen Y, Key MP,Cunha TS, Irigoyen MC, Morris M. Nocturnal hypertension in mice consuming a high fructose diet. Auton Neurosci 30;130(1-2):41-50, 2006.
30.  Cunha TS, Farah V, Paulini J, Pazzine M, Elased KM, Marcondes FK, Cláudia Irigoyen M, De Angelis K, Mirkin LD, Morris M. Relationship between renal and cardiovascular changes in a murine model of glucose intolerance. Regul Pept Mar 1;139(1-3):1-4, 2007.
31. Merat S, Casanada F, Sutphin M, Palinski W, Reaven PD. Western-type diets induce insulin resistance and hyperinsulinemia in LDL receptor-deficient mice but do not increase aortic atherosclerosis compared with normoinsulinemic mice in which similar plasma cholesterol levels are achieved by a fructose-rich diet. Arterioscler Thromb Vasc Biol 19:1223-1230, 1999.

 

   
               
Where Nutriphenomics® Begins