Home Search Sitemap Contact
Report, Repeat and Revise™
...Worldwide
  < back to index  
Resource Center    

Literature References

 

Selected Citations in Scientific Literature
Of the hundreds of articles citing Research Diets, Inc. formulas, the following may be of particular interest:

 

Amino Acid Diets
A10014, A10015, A10016, A10022

1. DeFabo EC, Webber, LJ, Ulman EA, & Broemeling LD. Dietary L-Histidine Regulates Murine Skin Levels of Trans-Urocanic Acid , an Immune-Regulating Photoreceptor, with an Unanticipated Modulation: Potential Relevance to Skin Cancer. J. Nutr. 127:2158-2164, 1997.

2. Guo F, Cavener DR. The GCN2 eIF2alpha kinase regulates fatty-acid homeostasis in the liver during deprivation of an essential amino acid. Cell Metab. 2007 Feb;5(2):103-14.

AIN-76A
D10001

1. Lien, E.L. et al. Comparison of AIN-76A and AIN-93G diets: a 13-week study in rats. Food and Chemical Toxicology. 39:385-392, 2001.

2. American Institute of Nutrition. AIN report of the AIN ad hoc committee on standards for nutritional studies.J. Nutr. 107:1340-1348, 1977.

3. American Institute of Nutrition. AIN second report of the AIN ad hoc committee on standards for nutritional studies. J. Nutr. 110:1726, 1980.

4. Clinton SK , Mulloy AL, Li SP, Manglan HJ, & Visek WJ. Dietary Fat and Protein Intake Differ in Modulation of Prostate Tumor Growth, Prlactin Secretion and Metabolism, and Prostate Gland Prolactin Binding Capacity in Rats. J. Nutr. 127:225-237, 1997.

5. Mackie JT, Atshaves BP, Payne HR, McIntosh AL, Schroeder F, Kier AB. Phytol-induced hepatotoxicity in mice. Toxicol Pathol. 2009;37(2):201-8. Epub 2009 Feb 2.

6. Yang K, Kurihara N, Fan K, Newmark H, Rigas B, Bancroft L, Corner G, Livote E, Lesser M, Edelmann W, Velcich A, Lipkin M, Augenlicht L. Dietary induction of colonic tumors in a mouse model of sporadic colon cancer. Cancer Res. 2008 Oct 1;68(19):7803-10.

7. Sargeant AM, Rengel RC, Kulp SK, Klein RD, Clinton SK, Wang YC, Chen CS. OSU-HDAC42, a histone deacetylase inhibitor, blocks prostate tumor progression in the transgenic adenocarcinoma of the mouse prostate model. Cancer Res. 2008 May 15;68(10):3999-4009.

8. Suh N, Paul S, Hao X, Simi B, Xiao H, Rimando AM, Reddy BS. Pterostilbene, an active constituent of blueberries, suppresses aberrant crypt foci formation in the azoxymethane-induced colon carcinogenesis model in rats. Clin Cancer Res. 2007 Jan 1;13(1):350-5.

9. Jones SB, Brooks JD. Modest induction of phase 2 enzyme activity in the F-344 rat prostate. BMC Cancer. 2006 Mar 15;6:62.

10. Shen G, Xu C, Hu R, Jain MR, Gopalkrishnan A, Nair S, Huang MT, Chan JY, Kong AN. Modulation of nuclear factor E2-related factor 2–mediated gene expression in mice liver and small intestine by cancer chemopreventive agent curcumin. Mol Cancer Ther. 2006 Jan;5(1):39-51.

11. Kobayashi N, Yoshida K, Nakano S, Ohno T, Honda T, Tsubokou Y, Matsuoka H. Cardioprotective mechanisms of eplerenone on cardiac performance and remodeling in failing rat hearts. Hypertension. 2006 Apr;47(4):671-9. Epub 2006 Feb 27.

12. Nagase M, Shibata S, Yoshida S, Nagase T, Gotoda T, Fujita T. Podocyte injury underlies the glomerulopathy of Dahl salt-hypertensive rats and is reversed by aldosterone blocker. Hypertension. 2006 Jun;47(6):1084-93. Epub 2006 Apr 24.

13. Okere IC, Chess DJ, McElfresh TA, Johnson J, Rennison J, Ernsberger P, Hoit BD, Chandler MP, Stanley WC. High-fat diet prevents cardiac hypertrophy and improves contractile function in the hypertensive dahl salt-sensitive rat. Clin Exp Pharmacol Physiol. 2005 Oct;32(10):825-31.

14. Osborn JW, Ariza-Nieto P, Collister JP, Soucheray S, Zimmerman B, Katz S. Responsiveness vs. basal activity of plasma ANG II as a determinant of arterial pressure salt sensitivity. Am J Physiol Heart Circ Physiol. 2003 Nov;285(5):H2142-9. Epub 2003 Jul 24.

High Sucrose Diets

1. Bizeau, M. E. et al. A high-sucrose diet increases gluconeogenic capacity in isolated periportal and perivenous rat hepatocytes. American Journal of Endocrinal Metabolism. E695-E702, 2001.

2. Bizeau, M. E. et al.Skeletal muscle sterol regulatory element binding protein-1c decreases with food deprivation and increases with feeding in rats. Journal of Nutrition. 133:1787-1792, 2003.

3. Commerford, S.R. et al. Hyperglycemia compensates for diet-induced insulin resistance in liver and skeletal muscle of rats. Am J Physiol Regulatory Integrative Comp Physiol. 281:R1380-R1389, 2001.

4. Commerford, S.R. et al. Diets enriched in sucrose or fat increase gluconeogenesis and G-6-Pase but not basal glucose production in rats. Am. J. Physiol. Endocrinol Metab. E545-E555, 2002.

5. Davidoff, A.J. et al. Sucrose-induced cardiomyocyte to dysfunction is both preventable and reversible with clinically relevant treatments. Am. J. Physiol. Endocrinol Metab. E718-E724, 2004.

6. Dutta, Kaushik et. Al. Cardiomyocyte disfunction in sucrose-fed rats is associated with insulin resistance. Diabetes. 50:1186-1192, 2001.

Haugen, B.R. et al. Retinoid X receptor ?-deficient mice have increased skeletal muscle lipoprotein lipase activity and less weight gain when fed a high-fat diet. Endocrinology. 8:3679-3685, 2004.

7. Kim, Jong-Yeon et al. Insulin resistance of muscle glucose transport in male and female rats fed a high-sucrose diet. Regulatory Integrative Comp. Physiol. 45:R665-R672, 1999.

Pagliassotti, M. J. et al. Changes in insulin action, triglycerides, and lipid composition during sucrose feeding in rats. American Journal of Physiology. 40:R1319-R1326, 1996.

8. Pagliassotti, M. J. et al. Developmental stage modifies diet-induced peripheral insulin resistance in rats. Am. J. Physiol. Regulatory. Integrative comp. Physiol. 278:R66-R73, 2000.

9. Pagliassotti, M. J. et al. Elevated basal PI 3-kinase activity and reduced insulin signaling in sucrose-induced hepatic insulin resistance. AM. J. Physiol. Endocrinol Metab. 282:E170-E176, 2002.

10. Pagliassotti, M. J. et al. Glucose-6-phosphatase activity is not suppressed but the mRNA level is increased by a sucrose-enriched meal in rats. Journal of Nutrition. 133:32-37, 2003.

11. Podolin, D.A. et al. Effects of a high-fat diet and voluntary wheel running on gluconeogenesis and lipolysis in rats. Journal of Applied Physiology. 86:1374-1380, 1999.

12. Schlaepfer, I.R. et al. Increased expression of the SNARE accessory protein Munc18c in lipid-mediated insulin resistance. Journal of Lipid Research. 44:1174-1181, 2003.

13. Wei, Yuren & Pagliassotti, M. J. Hepatospecific effects of fructose on c-jun NH 2 -terminal kinase: implications for hepatic insulin resistance. Am. J. Physiol> Endocrinol Metab. 287:E926-E933, 2004.

14. Wei, Yuren, et al. An acute increase in fructose concentration increases hepatic glucose-6-phosphatase mRNA via mechanisms that are independent of glycogen synthase kinase-3 in rats. Journal of Nutrition. 134:545-551, 2004.

15. Wei, Yuren, et al. Fructose selectively modulates c-jun N-Terminal kinase activity and insulin signaling in rat primary hepatocytes.. Journal of Nutrition. 135:1642-1646, 2005.

16. Pagliassotti, M et al. Tissue oxidative capacity, fuel stores and skeletal muscle fatty acid composition in obesity-prone and obesity-resistant rats. Obes. Res. 3:459-64, 1995.

17. Gayles EC, Pagliassotti MJ, Prach PA. Koppenhafer TA, & Hill JO. Contribution of energy intake and tissue enzymatic profile to body weight gain in high-fat-fed rats. Am. J. Physiol. 272:R188-R194, 1997.

18. Bizeau ME, Short C, Thresher JS, Commerford SR, Willis WT, & Pagliossotti MJ. Increased pyruvate flux capacities account for diet-induced increases in gluconeogenesis in vitro. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281:R427-R433, 2001.

19. Bizeau ME, Thresher JS, & Pagliossotti MJ. A high-sucrose diet increases gluconeogenic capacity in isolated periportal and perivenous rat hepatocytes. Am. J. Physiol. Endocrinol. Metab. 280:E695-E702, 2001.

20. Commerford SR, Pagliossotti MJ, Melby CL, Wei Y, Gayles EC, & Hill JO. Fat oxidation, lipolysis, and free fatty acid cycling in obesity-prone and obesity-resistant rats. Am. J. Physiol. Endocrinol. Metab. 279:E875-E885, 2000.

21. Commerford SR, Pagliossotti MJ, Melby CL, Wei Y, & Hill JO. Inherent capacity for lipogenesis or dietary fat retention is not increased in obesity-prone rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280:R1680-R1687, 2001.

22. Horton TJ, Gayles EC, Prach PA. Koppenhafer TA, & Pagliassotti MJ. Female rats do not develop sucrose-induced insulin resistance. Am. J. Physiol. 272:R1571-R1576, 1997.

23. Morin CL, Eckel RH, Marcel T, & Pagliassotti MJ. High fat diets elevate adipose tissue-derived tumor necrosis factor- alpha activity. Endocrinology 138:4665-4671, 1997.

24. Morin CL, Gayles EC, Podolin DA, Wei Y, Xu M, & Pagliassotti MJ. Adipose tissue-derived tumor necrosis factor activity correlates with fat cell size but not insulin action in aging rats. Endocrinology 139:4998-5005, 1998.

25. Pagliassotti MJ, Shahrokhi KA, & Hill JO. Skeletal muscle glucose metabolism in obesity-prone abd obesity-resistant rats. Am. J. Physiol. 264:R1224-R1228, 1993. 7. Horton TJ, Gayles EC, Prach PA. Koppenhafer TA, & Pagliassotti MJ. Female rats do not develop sucrose-induced insulin resistance. Am. J. Physiol. 272:R1571-R1576, 1997.

26. Pagliassotti MJ, Knobel SM, Shahrokhi KA, & Hill JO. Time course of adaptation to a high-fat diet in obesity-resistant and obesity-prone rats. Am. J. Physiol. 267:R659-R664, 1994

27. Pagliassotti MJ, Shahrokhi KA, & Moscarello M. Involvement of liver and skeletal muscle in sucrose-induced insulin resistance: dose-response studies. Am. J. Physiol. 266:R1637-R1644, 1994.

28. Pagliassotti MJ & Prach PA. Quantity of sucrose alters the tissue pattern and time course of insulin resistance in young rats. Am. J. Physiol. 269:R641-R646, 1995.

29. Podolin DA, Gayles EC, Wei Y, Thresher JS, & Pagliassoti MJ. Menhaden oil prevents but does not reverse sucrose-induced insulin resistance in rats. Am. J. Physiol. 274 (Regulatory Integrative Comp. Physiol. 43):R840-R848, 1998.

30. Thresher JS, Podolin DA, Wei Y, Mazzeo RS, & Pagliassotti MJ. Comparison of the effects of sucrose and fructose on insulin action and glucose tolerance. Am. J. Physiol. Regulatory Comp. Physiol. 279:R1334-R1340, 2000.

31. Commerford SR, Bizeau ME, McRae H, Jampolis A, Thresher JS, & Pagliossoti MJ. Hyperglycemia compensates for diet-induced insulin resistance in liver and skeletal muscle of rats. Am. J. Physiol. Regulatory Integrative Comp. Physiol. 281:R1380-R1389, 2001.

32. Bizeau ME, Short C, Thresher JS, Commerford SR, Willis WT, & Pagliassotti MJ. Increased pyruvate flux capacities account for diet-induced increases in gluconeogenesis in vitro. Am. J. Physiol. Regulatory Integrative Comp. Physiol. 281:R427-R433, 2001.

33. Kim J-Y, Nolte LA, Hansen PA, Han D-H, Kawanaka K, & Holloszy JO. Insulin resistance of muscle glucose transport in male and female rats fed a high-sucrose diet. Am. J. Physiol. 276 (Regulatory Integrative Comp. Physiol. 45):R665-R672, 1999.

34. Podolin DA, Wei Y, & Pagliassotti MJ. Effects of a high-fat diet and voluntary wheel running on gluconeogenesis and lipolysis in rats. J. Appl. Physiol. 86(4):1374-1380, 1999.

35. Pagliassotti MJ, Gayles EC, Podolin DA, Wei Y, & Morin CL. Developmental stage modifies diet-induced peripheral insulin resistance in rats. Am. J. Physiol. Regulatory Integrative Comp. Physiol. 278:R66-R73, 2000.

36. Pagliassotti MJ, Kang J, Thresher JS, Sung CK, & Bizeau ME. Elevated basal PI 3-kinase activity and reduced insulin signaling in sucrose-induced hepatic insulin resistance. Am. J. Physiol. Endocrinol. Metab. 282:E170-E176, 2002.

37. Weigle, D. S. and B. E. Levin. Defective dietary induction of uncoupling protein 3 in skeletal muscle of obesity-prone rats. Obes.Res. 8: 385-391, 2000.

38. Pagliassotti MJ, Horton T J, Gayles EC, Koppenhafer TA, Rosenzweig TD, and. Hill JO. Reduced insulin suppression of glucose appearance is related to susceptibility to dietary obesity in rats. Am.J.Physiol 272: R1264-R1270, 1997.

39. Pagliassotti MJ and Prach PA. Increased net hepatic glucose output from gluconeogenic precursors after high-sucrose diet feeding in male rats. Am.J.Physiol 272: R526-R531, 1997.

40. Pagliassotti MJ, Gayles EC, Podolin DA, Wei Y, and Morin CL. Developmental stage modifies diet-induced peripheral insulin resistance in rats. Am.J.Physiol Regul.Integr.Comp Physiol 278: R66-R73, 2000.

41. Pagliassotti MJ, Kang J, Thresher JS, Sung CK, and Bizeau ME. Elevated basal PI 3-kinase activity and reduced insulin signaling in sucrose-induced hepatic insulin resistance. Am.J.Physiol Endocrinol.Metab 282: E170-E176, 2002.

42. Podolin DA, Gayles EC, Wei Y, Thresher JS, and Pagliassotti MJ. Menhaden oil prevents but does not reverse sucrose-induced insulin resistance in rats. Am.J.Physiol 274: R840-R848, 1998.

43. Smith EE, Ferguson VL, Simske SJ, Gayles EC, and Pagliassotti MJ. Effects of high fat or high sucrose diets on rat femora mechanical and compositional properties. Biomed.Sci.Instrum. 36: 385-390, 2000.

44. Thresher JS, Podolin DA, Wei Y, Mazzeo RS, and Pagliassotti MJ. Comparison of the effects of sucrose and fructose on insulin action and glucose tolerance. Am.J.Physiol Regul.Integr.Comp Physiol 279: R1334-R1340, 2000

45. Fang CX, Dong F, Ren BH, Epstein PN, Ren J. Metallothionein alleviates cardiac contractile dysfunction induced by insulin resistance: role of Akt phosphorylation, PTB1B, PPARgamma and c-Jun. Diabetologia. 2005 Nov;48(11):2412-21. Epub 2005 Sep 20.

46. Haugen BR, Jensen DR, Sharma V, Pulawa LK, Hays WR, Krezel W, Chambon P, Eckel RH. Retinoid X receptor gamma-deficient mice have increased skeletal muscle lipoprotein lipase activity and less weight gain when fed a high-fat diet. Endocrinology. 2004 Aug;145(8):3679-85. Epub 2004 Apr 15.

47. Huang W, Dedousis N, O'Doherty RM. Hepatic steatosis and plasma dyslipidemia induced by a high-sucrose diet are corrected by an acute leptin infusion. J Appl Physiol. 2007 Jun;102(6):2260-5. Epub 2007 Mar 15.

48. Jackman MR, Steig A, Higgins JA, Johnson GC, Fleming-Elder BK, Bessesen DH, MacLean PS. Weight regain after sustained weight reduction is accompanied by suppressed oxidation of dietary fat and adipocyte hyperplasia. Am J Physiol Regul Integr Comp Physiol. 2008 Apr;294(4):R1117-29. Epub 2008 Feb 20.

49. Kopilas MA, Dang LN, Anderson HD. Effect of dietary chromium on resistance artery function and nitric oxide signaling in the sucrose-fed spontaneously hypertensive rat. J Vasc Res. 2007;44(2):110-8. Epub 2007 Jan 10.

50. MacLean PS, Higgins JA, Jackman MR, Johnson GC, Fleming-Elder BK, Wyatt HR, Melanson EL, Hill JO. Peripheral metabolic responses to prolonged weight reduction that promote rapid, efficient regain in obesity-prone rats. Am J Physiol Regul Integr Comp Physiol. 2006 Jun;290(6):R1577-88. Epub 2006 Feb 2.

51. Wei Y, Wang D, Pagliassotti MJ. Fructose selectively modulates c-jun N-terminal kinase activity and insulin signaling in rat primary hepatocytes. J Nutr. 2005 Jul;135(7):1642-6.

D11742 & D11743

Thresher JS, Podolin DA, Wei Y, Mazzeo RS, & Pagliassotti MJ. Comparison of the effects of sucrose and fructose on insulin action and glucose tolerance. Am. J. Physiol. Regulatory Comp. Physiol. 279:R1334-R1340, 2000.

Atherosclerosis
Western Diets
D12079B

1. Beigneux, A.P., et al. ATP-Citrate lyase deficiency in the mouse. Journal of Biological Chemistry. 279:9557-9564, 2004.

2. Bhat, B.G. et al. Inhibition of ileal bile acid transport and reduced atherosclerosis in apoE-/- mice by SC-435. Journal of Lipid Research. 44:1614-1621, 2003.

3. Collins, A.R. et al. Troglitazone inhibits formation of early atherosclerotic lesions in diabetic and nondiabetic low density lipoprotein receptor-deficient mice. Arterioscler Thromb. Vasc. Biol. 21:365-371, 2001.

4. Davis, H.R., et al. Ezetimibe, a potent cholesterol absorption inhibitor, inhibit the development of atherosclerosis in ApoE knockout mice. Arterioscler Thromb. Vasc. Biol. 21:2032-2038, 2001.

5. Lemaître, V., et al. Increased medial degradation with pseudo-aneurysm formation in apolipoprotein E-knockout mice deficient in tissue inhibitor of metalloproteinases-1. Circulation. 107:333-338, 2003.

6. Lemaître, V. et al. ApoE knockout mice expressing human matrix metalloproteinase-1 macrophages have less advanced atherosclerosis. Journal of Clinical Investigation. 107:1227-1234, 2001.

7. Ogus, S. et al. Hyperleptinemia precipitates diet-induced obesity in transgenic mice overexpressing leptin. Endocrinology. 144:2865-2869, 2003.

8. Park, Tae-Sik, et al. Inhibition of sphingomyelin synthesis reduces atherogeneesis in apolipoprotein E-knockout mice. Circulation. 110:3465-3471, 2004.

9. Seli, E., et al. Estradiol suppresses vascular monocyte chemotactic protein-1 expression during early atherogenesis. Am. J. Obstet. Gynecol. 187:1544-1549, 2002.

10. Collins AR, Meehan WP, Kintscher U, Jackson S, Wakino S, Noh G, Palinski W, Hsueh WA, & Law RE. Troglitazone inhibits formation of early atherosclerotic lesions in diabetic and non diabetic low density lipoprotein receptor-deficient mice. Arterioscler.Thromb.Vasc.Biol. 21: 365-371, 2001.

11. Desai U, Lee EC, Chung K, Gao C, Gay J, Key B, Hansen G, Machajewski D, Platt KA, Sands AT, Schneider M, Van Sligtenhorst I, Suwanichkul A, Vogel P, Wilganowski N, Wingert J, Zambrowicz BP, Landes G, Powell DR. Lipid-lowering effects of anti-angiopoietin-like 4 antibody recapitulate the lipid phenotype found in angiopoietin-like 4 knockout mice. Proc Natl Acad Sci U S A. 2007 Jul 10;104(28):11766-71. Epub 2007 Jul 3.

12.Bradley MN, Hong C, Chen M, Joseph SB, Wilpitz DC, Wang X, Lusis AJ, Collins A, Hseuh WA, Collins JL, Tangirala RK, Tontonoz P. Ligand activation of LXRβ reverses atherosclerosis and cellular cholesterol overload in mice lacking LXRα and apoE. J Clin Invest. 2007 Aug;117(8):2337-46.

13. Bhattacharya I, Mundy AL, Widmer CC, Kretz M, Barton M. Regional heterogeneity of functional changes in conduit arteries after high-fat diet. Obesity (Silver Spring). 2008 Apr;16(4):743-8. Epub 2008 Jan 24.

14. Bjursell M, Gerdin AK, Lelliott CJ, Egecioglu E, Elmgren A, Törnell J, Oscarsson J, Bohlooly-Y M. Acutely reduced locomotor activity is a major contributor to Western diet-induced obesity in mice. Am J Physiol Endocrinol Metab. 2008 Feb;294(2):E251-60. Epub 2007 Nov 20.

15. Hayward MD, Jones BK, Saparov A, Hain HS, Trillat AC, Bunzel MM, Corona A, Li-Wang B, Strenkowski B, Giordano C, Shen H, Arcamone E, Weidlick J, Vilensky M, Tugusheva M, Felkner RH, Campbell W, Rao Y, Grass DS, Buiakova O. An extensive phenotypic characterization of the hTNFalpha transgenic mice. BMC Physiol. 2007 Dec 10;7:13.

16. Stoneman V, Braganza D, Figg N, Mercer J, Lang R, Goddard M, Bennett M. Monocyte/Macrophage Suppression in CD11b Diphtheria Toxin Receptor Transgenic Mice Differentially Affects Atherogenesis and Established Plaques. Circ Res. 2007 Mar 30;100(6):884-93. Epub 2007 Feb 22.

Clinton/Cybulsky
D12102 to D12109

1. Lichtman AH, Clinton S et al. Hyperlipidemia and Atherosclerosclerotic Lesion Development in LDL Receptor-Deficient Mice Fed Defined Semi purified Diets With and Without Cholate. Arteriosclerosis, Thrombosis and Vascular Biology. 1999; 19:1938-1944.

2. Cybulsky MI, Iiyama K, Li H, Zhu S, Chen M, Iiyama M, Davis V, Gutierrez-Ramos J-C, Connelly PW, & Milstone DS. A major role for VCAM-1, but not ICAM-1, in early atherosclerosis. J. Clin. Invest. 107:1255-1262, 2001.

3. Deguchi JO, Aikawa M, Tung CH, Aikawa E, Kim DE, Ntziachristos V, Weissleder R, Libby P. Inflammation in atherosclerosis: visualizing matrix metalloproteinase action in macrophages in vivo. Circulation. 2006 Jul 4;114(1):55-62. Epub 2006 Jun 26.

4. Xie D, Hazarika S, Andrich AJ, Padgett ME, Kontos CD, Donatucci CF, Annex BH. High cholesterol feeding in C57/Blc6 mice alters expression within the VEGF receptor-ligand family in corporal tissue. J Sex Med. 2008 May;5(5):1137-48.

5. Aslanian AM, Charo IF. Targeted disruption of the scavenger receptor and chemokine CXCL16 accelerates atherosclerosis. Circulation. 2006 Aug 8;114(6):583-90. Epub 2006 Jul 31.

6. Chiba T, Shinozaki S, Nakazawa T, Kawakami A, Ai M, Kaneko E, Kitagawa M, Kondo K, Chait A, Shimokado K. Leptin deficiency suppresses progression of atherosclerosis in apoE-deficient mice. Atherosclerosis. 2008 Jan;196(1):68-75. Epub 2007 Mar 23.

7. Martens GW, Arikan MC, Lee J, Ren F, Vallerskog T, Kornfeld H. Hypercholesterolemia impairs immunity to tuberculosis. Infect Immun. 2008 Aug;76(8):3464-72. Epub 2008 May 27.

8. Wolfrum S, Teupser D, Tan M, Chen KY, Breslow JL. The protective effect of A20 on atherosclerosis in apolipoprotein E-deficient mice is associated with reduced expression of NF-kappaB target genes. Proc Natl Acad Sci U S A. 2007 Nov 20;104(47):18601-6. Epub 2007 Nov 15.

9. Trogan E, Feig JE, Dogan S, Rothblat GH, Angeli V, Tacke F, Randolph GJ, Fisher EA. Gene expression changes in foam cells and the role of chemokine receptor CCR7 during atherosclerosis regression in ApoE-deficient mice. Proc Natl Acad Sci U S A. 2006 Mar 7;103(10):3781-6. Epub 2006 Mar 1.

High Fat /High Sugar
D12327

1. Farrelly, D., et al. Mice mutant for glucokinase regulatory protein exhibit decreased liver glucokinase: a sequestration mechanism in metabolic regulation. PNAS. 96: 14511-14516, 1999.

2. Imai, T., et al. Impaired adipogenesis and lipolysis in the mouse upon selective ablation of the retinoid X receptor a mediated by a tamoxifen-inducible chimeric Cre recomninase (Cre-ER T2 ) in adipocytes. PNAS. 98:224-228.

3. Picard, F., et al. SRC-1 and TIF2 control energy balance between white and brown adipose tissues. Cell. 111:931-941, 2002.

4. Shaughnessy, Sara, et al. Adipocyte metabolism in adipocyte fatty acid binding protein knockout (aP2 -/- ) mice after short-term high-fat feeding. Diabetes. 49:904-911, 2000.

5. Chon SH, Zhou YX, Dixon JL, Storch J. Intestinal monoacylglycerol metabolism: developmental and nutritional regulation of monoacylglycerol lipase and monoacylglycerol acyltransferase. J Biol Chem. 2007 Nov 16;282(46):33346-57. Epub 2007 Sep 11.

6. Demozay D, Rocchi S, Mas JC, Grillo S, Pirola L, Chavey C, Van Obberghen E. Fatty aldehyde dehydrogenase: potential role in oxidative stress protection and regulation of its gene expression by insulin. J Biol Chem. 2004 Feb 20;279(8):6261-70. Epub 2003 Nov 24.

7. Harrity T, Farrelly D, Tieman A, Chu C, Kunselman L, Gu L, Ponticiello R, Cap M, Qu F, Shao C, Wang W, Zhang H, Fenderson W, Chen S, Devasthale P, Jeon Y, Seethala R, Yang WP, Ren J, Zhou M, Ryono D, Biller S, Mookhtiar KA, Wetterau J, Gregg R, Cheng PT, Hariharan N. Muraglitazar, a novel dual (alpha/gamma) peroxisome proliferator-activated receptor activator, improves diabetes and other metabolic abnormalities and preserves beta-cell function in db/db mice. Diabetes. 2006 Jan;55(1):240-8.

8. Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, Messadeq N, Milne J, Lambert P, Elliott P, Geny B, Laakso M, Puigserver P, Auwerx J. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell. 2006 Dec 15;127(6):1109-22. Epub 2006 Nov 16.

Condensed Milk Diets
D12266B, D12489B

1. Alberts, P. et al. Selective inhibition of 11ß-hydroxsteroid dehydrogenase type 1 decreases blood glucose concentrations in hyperglycaemic mice. Diabetologia. 45:1528-1532, 2002.

2. Alberts, P. et al. Selective inhibition of 11ß-hydroxysteroid dehydrogenase type 1 improves hepatic insulin sensitivity in hyperglycemic mice strains. Endocrinology. 144:4755-4762, 2003.

3. Turnbull, A.V., et al. Selective antagonism of the NPY Y5 receptor does not have a major effect on feeding in rats. Diabetes. 51:2441-2449, 2002.

4. Block, M.H., et al. Discovery and optimization of a series of carbozole ureas as NPY5 antagonists for the treatment of obesity. J. Med. Chem. 45:3509-3523, 2002.

5. Boustany, C.M., et al. Activation of the systemic and adipose rennin-angiotesin system in rats with diet-induced obesity and hypertension. Am. J. Physiol. Integr. Comp. Physiol. 287: R943-R949, 2004.

6. Chandler , P.C., et al. Change in CCK-8 response after diet-induced obesity and MC3/4-receptor blockade. Peptides. 25:299-306, 2004.

7. Chandler , P.C., et al. Feeding response to melanocortin agonist predicts preference for and obesity from a high-fat diet. Physiology and Behavior. 85:221-230, 2005.

8. Chen, A.S., et al. Role of the melanocortin-4 receptor in metabolic rate and food intake in mice. Transgenic Research. 9:145-154, 2000.

9. Clegg, D.J., et al. Reduced anorexic effects of insulin in obesity-prone rats fed a moderate-fat diet. Am. J. Physiol. 288:981-986, 2005.

10. DeRuisseuu, L.R., Parsons, A.D., & Overton, J.M. Adaptive thermogenesis is intact in B6 and A/J mice studied at thermoneutrality. Metabolism. 53:1417-1423, 2004.

11. Bobrian, A.D., et al. Effect of salt on hypertension and oxidative stress in a rat model of diet-induced obesity. Am. J. Physiol. Renal Physiol. 285::F619-F628, 2003.

12. Dobrian A.D. et al. Pioglitazone prevents hypertension and reduces oxidative stress in diet-induced obesity. Hypertension. 43: 48-56, 2004.

13. Heinrichs, Stephen. Nonexercise muscle tension and behavioral fidgeting are positively correlated with food availability/palatability and body weight in rats. Physiology & Behavior. 79:199-207, 2003.

14. Larden, P.J., et al. Differential influence of peroxisome proliferators-activated receptors ? and –a on food intake and energy homeostasis. Diabetes. 52:2249-2259, 2003.

15. Marsh, D.J., et al. Melanin-concentrating hormone 1 receptor-deficient mice are lean, hyperactive, and hyperphagic and have altered metabolism. PNAS. 99:3240-3245, 2002.

16. Shen, C.P., et al. Plasma agouti-related protein level: a possible correlation with fasted and fed states in humans and rats. Journal of Neuroendocrinology. 14:607-610, 2002.

17. Singh, K.A., et al. Acute insulin-induced elevations of circulating leptin and feeding inhibition in lean but not obese rats. Am. J. Regul. Integr. Comp. Physiol. 289:373-379, 2005.

18. Singh, D.K., et al. Phosphorylation of supernatant protein factor enhances wits ability to stimulate microsomal squalene monooxygenase. The Journal of Biological achemistry. 278:5646-5651, 2003.

19. Strack, A.M. et, al. Regulation of body weight and carcass composition by sibutramine in rats. Obesity Research. 10:173-181, 2002.

20. Warden, C. H., et al. Identification of a congenic mouse line with obesity and body length phenotypes. DOI. 15:460-471, 2004.

21. Zhou, D., et al. Enhanced running wheel activity of both Mch 1r- and Pmch-deficient mice. Regulatory Peptides. 124:53-63, 2005.

22. Lauterio TJ, Davies MJ, DeAngelo M, Peyser M, & Lee J. Neuropeptide Y Expression and Endogenous Leptin Concentration in a Dietary Model of Obesity. Obes. Res.. 1999; 7:498-505.

23. Lauterio TJ, Bond JP, & Ulman EA. Development and characterization of a purified diet to identify obesity-susceptible and resistant rat populations. J. Nutr. 1994; 124:2172-2178.

24. Lauterio TJ, Barkan A, DeAngelo M, DeMott-Friberg R, & Ramirez R. Plasma growth hormone secretion is impaired in obesity-prone rats before onset of diet-induced obesity. Am. J. Physiol. 1998; 275:E6-11.

25. Dobrian AD, Davies MJ, Prewitt RL, & Lauterio TJ. Development of hypertension in a rat model of diet-induced obesity. Hypertension. 2000; 35:1009-15.

26. Dobrian AD, Davies MJ, Schriver SD , Lauterio TJ, & Prewitt RL. Oxidative stress in a rat model of obesity-induced hypertension. Hypertension 2001; 37:554-560.

27. Levy JR, Lesko J, Krieg RJ, Adler RA & Stevens W. Leptin responses to glucose infusions in obesity-prone rats. Am J Physiol Endocrinol Metab 2000; 279:E1088-1096.

28. Ghibaudi L, Cook J, Farley C, Van Heek M, & Hwa J. Fat Intake Affects Adiposity, Comorbidity Factors, and Energy Metabolism of Sprague-Dawley Rats. Obes. Res. 10:956-963. 2002

29. Turnbull A.V., Ellershaw L, Msters D.J., Birtles S, Boyer S, Carroll D, Clarkson P, Loxham S. G. J., McAulay P, Teague J.L., Foote K.M., Pease J. E., & Block M.H. Selective Antagonism of the NPY Y5 Receptor Does Not Have a Major Effect on Feeding in Rats. Diabetes. 51:2441-2449, 2002.

30. Bouret SG, Gorski JN, Patterson CM, Chen S, Levin BE, Simerly RB. Hypothalamic neural projections are permanently disrupted in diet-induced obese rats. Cell Metab. 2008 Feb;7(2):179-85.

31. Gorski JN, Dunn-Meynell AA, Levin BE. Maternal obesity increases hypothalamic leptin receptor expression and sensitivity in juvenile obesity-prone rats. Am J Physiol Regul Integr Comp Physiol. 2007 May;292(5):R1782-91. Epub 2007 Jan 11.

32. Roth JD, Coffey T, Jodka CM, Maier H, Athanacio JR, Mack CM, Weyer C, Parkes DG. Combination therapy with amylin and peptide YY[3-36] in obese rodents: anorexigenic synergy and weight loss additivity. Endocrinology. 2007 Dec;148(12):6054-61. Epub 2007 Aug 30.

33. Shapiro A, Matheny M, Zhang Y, Tümer N, Cheng KY, Rogrigues E, Zolotukhin S, Scarpace PJ. Synergy between leptin therapy and a seemingly negligible amount of voluntary wheel running prevents progression of dietary obesity in leptin-resistant rats. Diabetes. 2008 Mar;57(3):614-22. Epub 2007 Dec 17.

34. Tizzano JP, Stribling DS, Perez-Tilve D, Strack A, Frassetto A, Chen RZ, Fong TM, Shearman L, Krieter PA, Tschöp MH, Skolnick P, Basile AS. The triple uptake inhibitor (1R,5S)-(+)-1-(3,4-dichlorophenyl)-3-azabicyclo[3.1.0] hexane hydrochloride (DOV 21947) reduces body weight and plasma triglycerides in rodent models of diet-induced obesity. J Pharmacol Exp Ther. 2008 Mar;324(3):1111-26. Epub 2007 Dec 18.

35. Boustany-Kari CM, Gong M, Akers WS, Guo Z, Cassis LA. Enhanced vascular contractility and diminished coronary artery flow in rats made hypertensive from diet-induced obesity. Int J Obes (Lond). 2007 Nov;31(11):1652-9. Epub 2006 Jul 4.

36. Cope MB, Jumbo-Lucioni P, Walton RG, Kesterson RA, Allison DB, Nagy TR. No effect of dietary fat on short-term weight gain in mice treated with atypical antipsychotic drugs. Int J Obes (Lond). 2007 Jun;31(6):1014-22. Epub 2007 Jan 16.

37. Fong TM, Guan XM, Marsh DJ, Shen CP, Stribling DS, Rosko KM, Lao J, Yu H, Feng Y, Xiao JC, Van der Ploeg LH, Goulet MT, Hagmann WK, Lin LS, Lanza TJ Jr, Jewell JP, Liu P, Shah SK, Qi H, Tong X, Wang J, Xu SS, Francis B, Strack AM, MacIntyre DE, Shearman LP. Antiobesity efficacy of a novel cannabinoid-1 receptor inverse agonist, N-[(1S,2S)-3-(4-chlorophenyl)-2-(3-cyanophenyl)-1-methylpropyl]-2-methyl-2-[[5-(trifluoromethyl)pyridin-2-yl]oxy]propanamide (MK-0364), in rodents. J Pharmacol Exp Ther. 2007 Jun;321(3):1013-22. Epub 2007 Feb 27.

38. Guijarro A, Suzuki S, Chen C, Kirchner H, Middleton FA, Nadtochiy S, Brookes PS, Niijima A, Inui A, Meguid MM. Characterization of weight loss and weight regain mechanisms after Roux-en-Y gastric bypass in rats. Am J Physiol Regul Integr Comp Physiol. 2007 Oct;293(4):R1474-89. Epub 2007 Jul 11.

39. Jones HN, Woollett LA, Barbour N, Prasad PD, Powell TL, Jansson T. High-fat diet before and during pregnancy causes marked up-regulation of placental nutrient transport and fetal overgrowth in C57/BL6 mice. FASEB J. 2009 Jan;23(1):271-8. Epub 2008 Sep 30.

40. Roth JD, Trevaskis JL, Wilson J, Lei C, Athanacio J, Mack C, Kesty NC, Coffey T, Weyer C, Parkes DG. Antiobesity effects of the beta-cell hormone amylin in combination with phentermine or sibutramine in diet-induced obese rats. Int J Obes (Lond). 2008 Aug;32(8):1201-10. Epub 2008 Jun 17.

Surwit Diets
D12328, D12329, D12330 and D12331

1. Baffy, G., et al. Obesity-related fatty liver is unchanged in mice deficient for mitochondrial uncoupling protein 2. Hepatology. 35:753-761, 2002.

2. Bale, T.L., et al. Corticotropin-releasing factor receptor-2-deficient mice display abnormal homeostatic responses to challenges of increased dietary fat and cold. Endocrinology.

3. Brownlow, B., et al. The role of motor activity in diet-induced obesity in C57BL/6J mice. Physiology & Behavior. 60:37-41, 1996.

4. Collins, Sheila & Surwit, Richard. Pharmacologic manipulation of ob expression in a dietary model of obesity. The Journal of Biological Chemistry. 271:9437-9440, 1996.

5. Collins, S., et al. Genetic variation to diet-induced obesity in the C57BL/6J mouse: physiological and molecular characteristics. Physiology & Behavior. 81:243-248, 2004.

6. Fruebis, J., et al. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and cause weight loss in mice. PNAS. 98:2005-2010, 2001.

7. Gimmeno, R.E., et al. Targeted deletion of fatty acid transport protein-4 results in early embryonic lethality. The Journal of Biological Chemistry. 278:49512-49516,2003.

8. Guerra, C., et al. Emergence of brown adipocytes in white fat mice is under genetic control. Journal of Clinical Investigation. 102:412-420, 1998.

9. Hohmann, J.G., et al. Obesity and endocrine dysfunction in mice with deletions of both neuopeptide Y and galanin. Molecular and Cellular Biology. 24:2978-2985, 2004.

10. Ishihara, Y., et al. Effects of diet and time of day on serum and CSF leptin levels in Osborne-Mendel and S5B/PI rats. Obesity Research. 12:1067-1076, 2004.

11. Kim, J., et al. Inactivation of fatty acid transport protein 1 prevents fat-induced insulin resistance in skeletal muscle. The Journal of Clinical Investigation. 113:756-763, 2004.

12. Liu, X., et al. Paradoxical resistance to diet-induced obesity in UCP1-deficient mice. Journal of Clinical Investigation. 111:399-407, 2003.

13. Morton, N., et al. Novel adipose tissue-mediated resistance to diet-induced visceral obesity in 11ß-hydroxysteroid dehydrogenase type 1-deficient mice. Diabetes. 53:931-938, 2004.

14. Münzberg, H. Region-specific leptin resistance within the hypothalamus of diet-induced obese mice. Endocrinology. 145:4880-4889, 2004.

15. Paterson , J.M., et al. Metabolic syndrome without obesity: hepatic overexpression of 11ß-hydroxysteroid dehydrogenase type 1 in transgenic mice. PNAS. 101:7088-7093, 2004.

16. Petro, A.E., et al. Fat, carbohydrate, and calories in the development of diabetes and obesity in the C57BL/6J mouse. Metabolism. 53:454-457,2004.

17. Pittner, RA, Effects of PYY[3-36] in rodent models of diabetes and obesity. International Journal of Obesity. 28:963-971, 2004.

18. Prpic, V., et al. Differential Mechanisms and development of leptin resistance in A/J versus C57BL/6J mice during diet-induced obesity. Endocrinology. 144:1155-1163, 2002.

19. Prpic, V., et al. Adaptive changes in adipocyte gene expression differ in AKR/J and SWR/J mice during diet induced obesity. Journal of Nutrition. 132:3325-3332, 2002.

20. Rossmeisl, M., et al. Variation in type 2 diabetes-related traits in mouse strains susceptible to diet-induced obesity. Diabetes. 52:1958-1966, 2003.

21. Surwitt, R.S., et al. Diet-induced changes in uncoupling proteins in obesity-prone and obesity-resistant strains of mice. Proc. Natl. Acad. Sci. USA . 95:4061-4065, 1998.

22. Szcypka, M.S., et al. Feeding behavior in dopamine-deficient mice. PNAS. 96:12138-12143, 1999.

23. Tsai, Yau-Sheng, et al. Hypertension and abnormal fat distribution but not insulin resistance in mice with P465L PPAR?. The Journal for Clinical Investigation. 114:241-249, 2004.

24. Tsukiyama-Kohara, Kyoko, et al. Adipose tissue reduction in mice lacking the translational inhibitor 4E-BP1. Nature Medicine. 7:1128-1132, 2001.

25. Vigliotta, G., et al. Overexoression of the ped/pea-15 gene causes diabetes by impairing glucose-stimulated insulin secretion in addition to insulin action. Molecular and Cellular Biology. 24:5005-5015, 2004.

26. Williams. T.D., et al. Diet-induced obesity and cardiovascular regulation in C57BL/6J mice. Clinical and Experimental Pharmacology and Physiology. 30:769-778, 2003.

27. Yu, X.X., et al. Characterization of a novel UCP5/BMCP1 isoforms and differential regulation of UCP$ and UCP5 expression through dietary or temperature manipulation. FASEB J. 14:1611-1618, 2000.

28. Yuan, M., et al. Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of IKKß . Science. 293:1673-1677, 2001.

29. Zvonic, Sanjin, et al. The regulation and activatin of ciliary neurotrophic factor signaling proteins in adipocytes. The Journal of Biological Chemistry. 278:2228-2235, 2003.

30. Surwit RS, et al. Differential effects of fat and sucrose on body composition in A/J and C57BL/6 mice. Metabolism.. 1998;47:1354-9.

31. Surwit RS, et al. Reversal of diet-induced obesity and diabetes in C57BL/6J mice. Metabolism.. 1998;47:1089-96.

32. Surwit RS, et al. Pharmacologic manipulation of ob expression in a dietary model of obesity. J Biol Chem.. 1996; 271:9437-40.

33. Surwit RS, et al. Differential Effects of Fat and Sucrose on the Development of Obesity and Diabetes in C57BL/6J and A/J Mice. Metabolism. 1995; 44:645-651.

34. Watson P, Commins S, Beiler R, Hatcher H & Gettys T. Differential regulation of leptin expression and function an A/J vs C57BL/6J mice during diet-induced obesity.Am J Physiol Endocrinol Metab. 2000: 279; E356-365.

35. Guerre-Millo M, Gervois P, Raspe E, Madsen L, Poulain P, Derudas B, Herbert J, Winegar D, Willson T, Fruchart J, Berge R & Staels B. Peroxisome Proliferator-activated Receptor Alpha Activators Improve Insulin Sensitivity and Reduce Adiposity. JBC. 2000: 275; 16638-16642

36. Lenhard J, Croom D, Weiel J, Spaltenstein A, Reynolds D & Furfine E. Dietary Fat Alters HIV Protease Inhibitor-Induced Metabolic Changes in Mice. J Nutr. 2000: 130; 2361-2366

37. Surwit RS, Dixon T, Petro A, Daniel K & Collins S. Diazoxide Restores Beta-three Adrenergic Receptor Function in Diet-Induced Obesity and Diabetes. Endocrinol. 2000: 141; 3630-3637

38. Bachman ES, Dhillon H, Zhang C, Cinti S, Bianco AC, Kobilka BK & Lowell BB.ßAR Signaling Required for Diet-Induced Thermogenesis and Obesity Resistance. Science. 297:843-845. 2002

39. Hofmann, SM, et al. Defective Lipid Delivery Modulates Glucose Tolerance and Metabolic Response to Diet in Apolipoprotein E–Deficient Mice. Diabetes 57:5–12, 2008.

40. Anderson KA, Ribar TJ, Lin F, Noeldner PK, Green MF, Muehlbauer MJ, Witters LA, Kemp BE, Means AR. Hypothalamic CaMKK2 contributes to the regulation of energy balance. Cell Metab. 2008 May;7(5):377-88.

41. Bhattacharya I, Mundy AL, Widmer CC, Kretz M, Barton M. Regional heterogeneity of functional changes in conduit arteries after high-fat diet. Obesity (Silver Spring). 2008 Apr;16(4):743-8. Epub 2008 Jan 24.

42. Buchner DA, Burrage LC, Hill AE, Yazbek SN, O'Brien WE, Croniger CM, Nadeau JH. Resistance to diet-induced obesity in mice with a single substituted chromosome. Physiol Genomics. 2008 Sep 17;35(1):116-22. Epub 2008 Jul 15.

43. Ferron M, Hinoi E, Karsenty G, Ducy P. Osteocalcin differentially regulates beta cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proc Natl Acad Sci U S A. 2008 Apr 1;105(13):5266-70. Epub 2008 Mar 24.

44. Harrington WW, S Britt C, G Wilson J, O Milliken N, G Binz J, C Lobe D, R Oliver W, C Lewis M, M Ignar D. The Effect of PPARalpha, PPARdelta, PPARgamma, and PPARpan Agonists on Body Weight, Body Mass, and Serum Lipid Profiles in Diet-Induced Obese AKR/J Mice. PPAR Res. 2007;2007:97125.

45. Hofmann SM, Perez-Tilve D, Greer TM, Coburn BA, Grant E, Basford JE, Tschöp MH, Hui DY. Defective lipid delivery modulates glucose tolerance and metabolic response to diet in apolipoprotein E-deficient mice. Diabetes. 2008 Jan;57(1):5-12. Epub 2007 Oct 3.

46. Lee DF, Kuo HP, Chen CT, Wei Y, Chou CK, Hung JY, Yen CJ, Hung MC. IKKbeta suppression of TSC1 function links the mTOR pathway with insulin resistance. Int J Mol Med. 2008 Nov;22(5):633-8.

47. Li JZ, Ye J, Xue B, Qi J, Zhang J, Zhou Z, Li Q, Wen Z, Li P. Cideb regulates diet-induced obesity, liver steatosis, and insulin sensitivity by controlling lipogenesis and fatty acid oxidation. Diabetes. 2007 Oct;56(10):2523-32. Epub 2007 Jul 23.

48. Mack C, Wilson J, Athanacio J, Reynolds J, Laugero K, Guss S, Vu C, Roth J, Parkes D. Pharmacological actions of the peptide hormone amylin in the long-term regulation of food intake, food preference, and body weight. Am J Physiol Regul Integr Comp Physiol. 2007 Nov;293(5):R1855-63. Epub 2007 Sep 12.

49. Metlakunta AS, Sahu M, Sahu A. Hypothalamic phosphatidylinositol 3-kinase pathway of leptin signaling is impaired during the development of diet-induced obesity in FVB/N mice. Endocrinology. 2008 Mar;149(3):1121-8. Epub 2007 Nov 29.

50. Miele C, Raciti GA, Cassese A, Romano C, Giacco F, Oriente F, Paturzo F, Andreozzi F, Zabatta A, Troncone G, Bosch F, Pujol A, Chneiweiss H, Formisano P, Beguinot F. PED/PEA-15 regulates glucose-induced insulin secretion by restraining potassium channel expression in pancreatic beta-cells. Diabetes. 2007 Mar;56(3):622-33.

51. Obrosova IG, Ilnytska O, Lyzogubov VV, Pavlov IA, Mashtalir N, Nadler JL, Drel VR. High-fat diet induced neuropathy of pre-diabetes and obesity: effects of "healthy" diet and aldose reductase inhibition. Diabetes. 2007 Oct;56(10):2598-608. Epub 2007 Jul 12.

52. Sauter NS, Schulthess FT, Galasso R, Castellani LW, Maedler K. The antiinflammatory cytokine interleukin-1 receptor antagonist protects from high-fat diet-induced hyperglycemia. Endocrinology. 2008 May;149(5):2208-18. Epub 2008 Jan 31.

53. Tsao D, Thomsen HK, Chou J, Stratton J, Hagen M, Loo C, Garcia C, Sloane DL, Rosenthal A, Lin JC. TrkB agonists ameliorate obesity and associated metabolic conditions in mice. Endocrinology. 2008 Mar;149(3):1038-48. Epub 2007 Dec 6.

Paigen Diet
D12336

1. Ivan, E., et al. Expansive arterial remodeling is associated with increased neointimal macrophage foam cell content. Circulation. 105:2686-2691, 2002.

2. Lessner, S.M. Atherosclerotic lesions grow through recruitment and proliferation of circulating monocytes in a murine model. American Journal of Pathology. 160:2145-2155, 2002.

3. Lessner, S.M., et al. Compensatory vascular remodeling during atherosclerotic lesion growth depends on matrix metalloproteinase-9 activity. Arterioscler. Thromb. Vasc. Biol. 24:2123-2129, 2004.

4. Weiss D, Kools JJ, and Taylor WR. Angiotensin II-Induced Hypertension Accelerates the Development of Atherosclerosis in ApoE-Deficient Mice. Circulation 103: 448-454, 2001.

5. Correa-Cerro LS, Wassif CA, Kratz L, Miller GF, Munasinghe JP, Grinberg A, Fliesler SJ, Porter FD. Development and characterization of a hypomorphic Smith-Lemli-Opitz syndrome mouse model and efficacy of simvastatin therapy. Hum Mol Genet. 2006 Mar 15;15(6):839-51. Epub 2006 Jan 30.

6. Ferrara DE, Weiss D, Carnell PH, Vito RP, Vega D, Gao X, Nie S, Taylor WR. Quantitative 3D fluorescence technique for the analysis of en face preparations of arterial walls using quantum dot nanocrystals and two-photon excitation laser scanning microscopy. Am J Physiol Regul Integr Comp Physiol. 2006 Jan;290(1):R114-23. Epub 2005 Oct 13.

7. Davies JP, Scott C, Oishi K, Liapis A, Ioannou YA. Inactivation of NPC1L1 causes multiple lipid transport defects and protects against diet-induced hypercholesterolemia. J Biol Chem. 2005 Apr 1;280(13):12710-20. Epub 2005 Jan 25.

8. Huang H, Liu T, Rose JL, Stevens RL, Hoyt DG. Sensitivity of mice to lipopolysaccharide is increased by a high saturated fat and cholesterol diet.J Inflamm (Lond). 2007 Nov 12;4:22.

9. Koehler K, Gordon S, Brandt P, Carlsson B, Bäcksbro-Saeidi A, Apelqvist T, Agback P, Grover GJ, Nelson W, Grynfarb M, Färnegårdh M, Rehnmark S, Malm J. Thyroid receptor ligands. 6. A high affinity "direct antagonist" selective for the thyroid hormone receptor. J Med Chem. 2006 Nov 16;49(23):6635-7.

Liquid Diets
D12395L

1. Brown, N., et al. Fas death receptor signaling represses monocyte numbers and macrophage activation in vivo. The Journal of Immunology. 173:7584-7593, 2004.

D12449L

1.Bessesen DH, Vensor SH & Jackman MR. Trafficking of dietary oleic, linolenic, and stearic acids in fasted or fed lean rats. Am J Physiol Endocrinol Metab. 278: E1124-1132; 2000

L10012

Ackroff, K. & Scalfani, A. Rats integrate meal cost and postoral changes in caloric density. Physiology and Behavior. 60:927-932, 1996.

L10016A

1. Brown LS, Harris FL, & Guidot DM. Chronic ethanol ingestion potentiates TNF-a-mediated oxidative stress and apoptosis in rat type II cells. Am J Physiol Lung Cell Mol Physiol. 281: L377-L386. 2001

L10035A & L10036A

1. Smith BK, Andrews PK , York DA & West DB. Divergence in proportional fat intake in AKR/J and SWR/J mice endures across diet paradigms. Am J Physiol. 277:R776-R785.1999 L10038V

1. Smagin GN, Howell LA, Redmann S, Ryan DH, & Harris RBS. Prevention of stress-induced weight loss by third ventricle CRF receptor antagonist. Am J Physiol. 276: R1461-R1468. 1999

L10255BE

1. Fisher H., Halladay A., Ramasubramaniam N., Petrucci J.C., Dagounis D., Sekowski A., Martin J.V., & Wagner G.C. Liver Fat and Plasma Ethanol Are Sharply Lower in Rats Fed Ethanol in Conjunction with High Carbohydrate Compared with High Fat Diets. J. Nutr. 132: 2732-2736. 2002

DIO-Diet-Induced Obesity
D12450B, D12451, D12492 The "Original High Fat Diets"

DIO Mouse Models

1. Alfadda, Axssim, et al. Mice with deletion of the mitochondrial glycerol-3-phosphate dehydrogenase gene exhibit a thrifty phenotype: effect gender. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287: R147-R156, 2004.

2. Allan, Mark, Eisen, Eugene, & Pomp, Daniel. The M16 Mouse: An outbred Animal Model of Early Onset Polygenic Obesity and Diabesity. Obesity Research. 12: 1397-1407. 2004.

3. Andrikopoulos, Sofianos, et al. Extended life span is associated with insulin resistance in a transgenic mouse model of insulinoma secreting human islet amyloid polypeptide. Am. J. Physiol. Endocrinol. Metab. 286: E418-E424. 2004.

4. Anini, Younes & Brubaker, Patricia. Role of Leptin in the Regulation of Glucagon-Like Peptide-1 Secretion. Diabetes. 62: 252-269. 2003.

5. Blüher, Susann, et al. Responsiveness to Peripherally Administered Melanocortins in Lean and Obese Mice. Diabetes. 53: 82-90. 2004.

6. Bowen, Heather, Mitchell, Tiffany, Harris, Ruth. Method of leptin dosing, strain, and group housing influence leptin sensitivity in high-fat-fed weanling mice. Am. J. Of Regul. Integr. Comp. Physiol. 284: R87-R100. 2003

7. Bråkenhielm, Ebba, et al. Angiogenesis Inhibitor, TNP-470, Prevents Diet-Induced and Genetic Obesity in Mice. Circ Res. 94:1-10.2004.

8. Brommage, Robert. Validation and calibration of DEXA body composition in mice. Am. J. Physiol. Endocrinol Metab. 285:E454-E459. 2002

9. Brunengraber, Daniel, et al. Influence of diet on the modeling of adipose tissue triglycerides during growth. Am. J. Physiol. Endocrinol Metab. 285:E917-E925. 2003.

10. Bullen, John, et al. Short-term resistance to diet-induced obesity in A/J mice is not associated with regulation of hypothalamic neuropeptides. Am. J. Physiol. Endocrinol Metab. 287:E662-E670. 2004.

11. Cha, Youn-Soo, et al. Acanthopanax senticosus Extract Prepared from Cultured Cells Decreases Adiposity and Obesity Indices in C57BL/6J Mice Fed a High Fat Diet. Journal of Medicinal Food. 4:422-429. 2004.

12. Challis, B.G., et al. Mice lacking pro-opiomelanocortin are sensitive to high-fat feeding but respond normally to the acute anorectic effects of peptide-YY3-36. PNAS. 101:4695-4700. 2004.

13. Chen, Jerry, et al. Physiologic and Pharmacologic Factors Influencing Glyceroneogenic Contribution to Triacylglyceride-Glycerol, Measured By Mass Isotopomer Distribution Analysis. The American Society for Biochemistry and Molecular Biol,ogy. 2005.

14. Cohen, Alex, et al. Caveolin-1-deficient mice show insulin resistance and defective insulin receptor protein expression in adipose tissue. Am. J. Physiol. Cell Physiol. 285:C222-C235. 2003.

15. Combs, Terry P., et al. A Transgenic Mouse with a Deletion in the Collagenous Domain of Adiponectin and Improved Insulin Sensitivity. Endocrinology. 145:367-383. 2004.

16. Conarello, Stacey, et al. Mice lacking dipeptidyl peptidase IV are protected against obesity and insulin resistance. PNAS. 100:6825-6830. 2003.

17. Della-Fera, Mary, et al. Resistance to IP leptin-induced adipose apoptosis caused by high-fat diet in mice. Biochemical and Biophysical Research Communications. 303:1053-1057. 2003.

18. Dhar, Madhu, et al. Mice Heterozygous for Atp 10c, a Putative Amphipath Represent a Novel Model of Obesity and Type 2 Diabetes. Journal of Nutrition. 134:799-805. 2004.

19. El-Haschimi, Karim, et al. Insulin Resistance and Liposystrophy in Mice Lacking Ribosomal S6 Kinase 2. Diabetes. 52:1340-1346. 2003.

20. El-Haschimi, Karim, et al. Two defects contribute to hypothalamic leptin resistance in mice with diet-induced obesity. J. Clin. Invest. 105:1827-1832. 2000.

21. Felipe, Francisco, et al. Modulation of Resistin Expression by Retinoic Acid and Vitamin A status. Diabetes. 53:882-889. 2004.

22. Feipe, F., et al. Up-Regulation of muscle uncoupling protein 3 gene expression in mice following high fat iet, dietary vitamin A supplementation and acute retinoic acid-treatment. International Journal of Obesity. 27:60-69. 2003.

23. Fewlass, Darius, et al. Obesity-related leptin regulates Alzheimer's Aß. FASEB. 18:1870-1878. 2004.

24. Freedman, Bethany , et al. A Dominant Negative Peroxisome Proliferator-activated Receptor-? Knock-in Mouse Exhibits Features of the Metabolic Syndrome. The Journal of Biological Chemistry. 17:1718-1726. 2005.

25. Fu, Jin, et al. Oleylethanolamide regulates feeding and body weight through activatio3n of the nuclear receptor PPAR-a. Nature. 425:90-93.2003.

26. Gavrilova, Oksana, et al. Liver Peroxisome Proliferator-activated Receptor ? Contributes to Hepatic Steatosis, Triglyceride Clearance, and Regulation of Body Fat Mass. The Journal of Biological Chemistry. 278:34268-34276. 2003.

27. Gerin, Isabelle, et al. LXRß is Required for Adipocyte Growth, Glucose Homeostasis and ß Cell Function. The American Society for Biochemistry and Molecular Biology, Inc. 2005.

28. Guo, Kai-Ying, et al. Effects of obesity on the relationship of leptin mRNA expression and adipocyte size in anatomically distinct fat depots in mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287:R112-R119. 2004.

29. Haltiner, Andrea, et al. Leptin action is modified by an interaction between dietary fat content and ambient temperature. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287:

30. R1250-R1255. 2004.

31. Haluzik, Martin, et al. PPAR-a deficiency does not alter insulin sensitivity in mice maintained on regular or high fat diet: the hyper insulinem,ic-euglycemic clamp studies. Endocrinology. 145:1662-16672004.

32. Hambly, Catherine, et al. Mice With Low Metabolic Rates Are Not Susceptible to Weight Gain When Fed a High-Fat Diet. Obesity Research. 13:556-566.2005.

33. Hancock, Arthur, et al. Antiobesity effects of A-331440, a novel non-imidazole histamine H3 receptor antagonist. European Journal of Pharmacology. 487:183-197. 2004.

34. Hancock, A.A., et al. Antiobesity evaluation of histamine H3 receptor (H3R) antagonist analogs of A-331440 with improved safety and efficacy. Inflammation Research. 54:S27-S29. 2005.

35. Hancock, A.A., et al. Histamine H3 antagonists in models of obesity. Inflammation Research. 53:S47-S48. 2004.

36. Harris, Ruth, et al. Leptin Resistance in mice is determined by gender and duration of exposure to high-fat diet. Physiology & Behaviro. 78:543-555. 2003.

37. Hennige, Anita, et al. Upregulation of insulin receptor substrate-2 in pancreatic ß cells prevents diabetes. J. Clin Invest. 112:1521-1532. 2003.

38. Hildebrandt, Audrey, et al. Antiobesity effects of chronic cannabinoid CB1 receptor antagonist treatment in diet-induced obese mice. European Journal of Pharmacology. 462:125-132. 2003.

39. Hildebrandt, Audrey, et al. Validation of a high-resolution X-ray computed tomography system to measure murine adipose tissue depot mass in situ and longitudinally. Journal of Pharmacological and Toxicological Methods. 47:99-106. 2002.

40. Hileman, Stanley, et al. Characterization of Short Isoforms of the Leptin Receptor in Rat Cerebral Microvessels and of Brain Uptake of Leptin in Mouse Models of Obesity. Endocrinology. 143:775-783. 2002.

41. Ho, Lap, et al. Diet-induced insulin resistance promotes amyloidosis in a transgenic mouse model of Alzheimer's disease. The FASEB Journal. 2004.

42. Holder, J. Lloyd, et al. Sim 1 gene dosage modulates the homeostatic feeding response to increased dietary fat in mice. Am. J. Physiol Metab. 287:E105-E113. 2004.

43. Ishii, Makoto, et al. Targeted disruption of GPR7, the endogenous receptor for neuropeptides B and W, leads to metabolic defects and adult-onset obesity. PNAS. 100:10540-10545. 2003.

44. Bolleddula, Jayaprakasam, et al., Amelioration of Obesity and Glucose Intolerance inHigh-Fat-Fed C57BL/6 Mice by Anthocyanins and Ursolic Acid in Cornelian Cherry ( Cornus mas). J. Agric. Food Chem. 54:243-248. 2006.

45. Jerez-Timaure, Nancy , et al. Characterization of QTL with Major Effects on Fatness and Growth on Mouse Chromosome 2. Obesity Research. 12:1408-1420. 204.

46. Jiang, Tao, et al., Diet Induced Obesity In C57bl/6j Mice Causes Increased Renal Lipid Accumulation And Glomerulosclerosis Via A Sterol Regulatory Element Binding Protein-1c Dependent Pathway. The American Society for Biochemistry. 2005.

47. Jiang, Guoqlang, et al. Prevention of obesity in mice by antisense oligonucleotide inhibitors of stearoyl-CoA desaturase. The Journal of Clinical Investigation. 2005.

48. Joseph, Jaime, et al. Uncoupling Protein 2 Knockout Mice Have Enhanced Insulin Secretory Capacity After a High-Fat Diet. Diabetes. 51:3211-3219. 2002.

49. Kim, S., et al. Effects of High-Fat Diet, Angiotensinogen (agt) Gene Inactivation, and Targeted Expression to Adipose Tissue on Lipid Metabolism and Renal Gene Expression. Horm. Metab. Res. 34:721-725. 2002.

50. Kishino, Eriko, et al. A Mixture of the Salacia reticulate (Kotala himbutu) Aqueous Extract and Cyclodextrin Reduces the Accumulation of Visceral Fat Mass in Mice and Rats with High-Fat Diet-Induced Obesity. Journal of Nutrition. 136:433-439. 2006.

51. Klover, Peter, et al. Interleukin-6 Depletion Selectively Improves Hepatic Insulin Action in Obesity. Endocrinology. 146:3417-3427. 2005.

52. Kokkotou, Efi, et al. Mice with MCH ablation resist diet induced obesity through strain specific mechanisms. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004.

53. Kowalski, T., et al. Transgenic overexpression of neuromedin U promotes leanness and hypophagia in mice. Journal of Endocrinology. 185:151-164. 2005.

54. Kumar, Monica, et al. Differential effects of a centrally acting fatty acid synthase inhibitor in lean and obese mice. PNAS. 99:1921-1925.2002.

55. Lambert, P.D., et al. Ciliary neurotrophic factor activates leptin-like pathways and reduces body fat, without cachexia or rebound weight gain, even in leptin resistant obesity. PNAS. 98:4652-4657. 2001.

56. LeLay, Soazig, et al. Decreased Resistin to Mice with Different Sensitivities to High-Fat Diet. Biochemical and Biophysical Communications. 289:564-567. 2001.

57. Lee, Jennifer, et al. Circulating resistin in lean, obese, and insulin-resistant mouse models: lack of association with insulinemia and glycemia. AJP-Endo. 288:625-632. 2005.

58. Li, Jinping, et al. Insig-1 “brakes” lipogenesis in sdipocytes and inhibits differentiation of preadipocytes. PNAS. 100:9476-9481. 2003.

59. Liang, Y. et al. Topiramate ameliorates hyperglycemia and improves glucose-stimulated insulin release in ZDF rats and db/db mice. Diabetes, Obesity, and Metabolism. 2004.

60. Longo, Kenneth, et al. Wnt10b Inhibits Development of White and Brown Adipose Tissues. The Journal of Biological Chemistry. 279:35503-35509. 2004.

61. Looije, Norbert, et al. Disodium Ascorbyl Phytostanyl Phosphates (FM-VP4) reduces plasma cholesterol concentration, body weight and abdominal fat gain within a dietary-induced obese mouse model. J. Pharm. Pharmaceut. Sci. 3:400-408.2005.

62. Ludwig, David, et al. Melanin-concentrating hormone overexpression in transgenic mice leads to obesity and insulin resistance. Journal of Clinincal Investigation. 107:379-386. 2001.

63. Luo, Jiangming, et al. Reduced Fat Mass in Mice Lacking Orphan Nuclear Receptor Estrogen-Related Receptor a. Mollecular and Cellular Biology. 23:7947-7956. 2003.

64. Masaki, Megumi, et al. Role of Meltrin a (ADAM12) in Obesity Induced by High-Fat Diet. 146:1752-1763. 2005.

65. Masuzaki, Hiroaki, et al. A Transgenic Model of Visceral Obesity and the Metabolic Syndrome. Science. 294:2166-2170.2001.

66. Moon, Yang Soo, et al. Mice Lacking Paternally Expressed Pref-1/Dlk1 Display Growth Retardation and Accelerated Adiposity. Molecular and Cellular Biology. 22:5585-5592. 2002.

67. Mu, Huiling & Hoy, Carl-Erik. The digestion of dietary triacylglycerols. Progress in Lipid Research. 43:105-133. 2004.

68. Murray, Ian, et al. Acylation Stimulating Protein (ASP) Deficiency Alters Postprandial and Adipose Tissue Metabolism in Male Mice. The Journal of Biological Chemistry. 274:36219-36225. 1999.

69. Nonogaki, Katsunori, et al. Leptin-independent hyperphagia and type 2 diabetes in mice with a mutated serotonin 5-HT2c receptor gene. Nature Medicine. 4:1152-1156. 1998.

70. Patsouris, David, et al. Peroxisome Proliferator-Activated Receptor a Mediates the Effects of High-Fat Diet on Hepatic Gene Expression. Endocrinology. 147:1508-1516. 2006.

71. Phan, Loan, et al. The mouse mahoganoid coat color mutation disrupts a novel C3HC4 RING domain protein. The Journal of Clinical Investigation. 110:1449-1459. 2002.

72. Pierroz, Dominique, et al. Effects of Acute and Chronic Administration of the Melanocortin Agonist MTII in Mice With Diet-Induced Obesity. Diabetes. 51:1337-1345. 2002.

73. Ragolia, Louis, et al. Accelerated Glucose Intolerance, Nephropathy, and Athersclerosis in Prostaglandin D2 Synthase Knockout Mice. The American Society for Biochemistry and Molecular Biology, Inc. 2005.

74. Rahmouni, Kamal, et al. Role of Selective Leptin Resistance in Diet-Induced Obesity Hypertension. Diabetes. 54:2012-2018. 2005.

75. Rajala, Michael, et al. Regulation of Resistin Expression and Circulating Levels in Obesity, Diabetes, and Fasting. Diabetes. 53:1671-1679. 2004.

76. Rangwala, Shamina, et al. Genetic Modulation of PPAR? Phosphorylation Regulates Insulin Sensitivity. 5:657-663. 2003.

77. Razani, Babak, et al. Caveolin-1-deficient Mice Are Lean, Resistant to Diet-Induced Obesity, and Show Hypertriglyceridemia with Adipocyte Abnormalities. The Journal of Biological Chemistry. 277:8635-8647. 2002.

78. Rieusset, Jennifer, et al. A New Selective Peroxisome Proliferator-Activated Receptor ? Antagonist with Antiobesity and Antidiabetic Activity. Molecular Endocrinology. 16:2628-2644. 2002.

79. Rosenfeld, Cheryl & Roberst, Michael. Maternal Diet and Other Factors Affecting Offspring Sex Ratio: A Review. 71:1063-1070. 2004.

80. Rosenfeld, Cheryl, et al. Striking variation in the sex ratio of pups born to mice according to whether maternal diet is high in fat or carbohydrate. PNAS. 100:4628-4632. 2003.

81. Roy, Suheeta, et al. A Biphasic Response of Hepatobiliary Cholesterol Metabolism to Dietary Fat at the onset of Obesity in the Mouse. Hepatology. 41:887-895. 2005.

82. Scheuner, Donalyn, et al. Control of mRNA translation preserves endoplasmic reticulum function in beta cells and maintains glucose homeostasis. Nature Medicine. 11:757-764. 2005.

83. Scroocchi, Louise & Drucker, Daniel. Effects of Aging and a High Fat Diet on Body Weight and Glucose Tolerance in Glucagon-Like Peptide-1 Receptor -/- Mice. Endocrinology. 139. 3127-3132. 1998.

84. Sleeman, Mar, et al. Absence of the lipid phodphatase SHIP2 confers resistance to dietary obesity. Nature Medicine. 2005.

85. Souers, Andre J., et al. Synthesis and evaluation of urea-based indazoles as melanin-concentrating hormone receptor 1 antagonists for the treatment of obesity. Bioorganic & Medicinal Chemistry Letters. 15:2752-2757. 2005.

86. Sparks , Lauren, A high-Fat Diet Coordinately Downregulates Genes Required for Mitochondrial Oxidative Phosphorylation in Skeletal Muscle. Diabetes. 54:1926-1933.2005.

87. Chirala, Subrahmanyam, et al. Fatty acid synthesis is essential in embryonic development: Fatty acid synthase null mutants and most of the heterozygotes die in utero. PNAS. 100:6358-6363. 2003.

88. Tabarin, Antoine, et al. Resistance to Diet-Induced Obesity in µ-Opiod Receptor-Deficient Mice. 54:3510-3516. 2005.

89. Takahashi, N., et al. Divergent Effects of Leptin in Mice Susceptible or Resistant to Obesity. Horm Metab Res. 34:691-697.2002.

90. Tanaka, Tomohiro, Skeletal Muscle AMP-Activated Protein Kinase Phosphorylation Parallels Metabolic Phenotype in Leptin Transgenic Mice Under Dietary Modification. Diabetes. 54:2365-2374. 2005.

91. Tang, Haiying, et al. High-resolution magnetic resonance imaging tracks changes in organ and tissue mass in obese and aging rats. Am. J. Physiol. Regulatory Integrative Comp. Physiol. 282:R890-R899. 2002.

92. Thupari, Jagan, et al. C75 increases peripheral energy utilization and fatty acid oxidation in diet-induced obesity. PNAS. 99:9498-9502. 2002.

93. Thupari, Jagan, et al. Chronic C75 treatment of diet-induced obese mice increases fat oxidation and reduces food intake to reduce adipose mass. Am. J. Physiol. Endocrinol. Metab. 287:E97-E104. 2004.

94. Toney, Jeffrey, et al. A “Mix and Read” Assay for Insulin Using Fluorometric Microvolume Assay Technology. ASSAY and Drug Development Technologies. 1:521-525.2003.

95. Tortoriello, Drew, et al. Dietary-Induced Obesity and Hypothalmic Infertility in Female DBA/2J Mice. Endocrinology. 145:1238-1247. 2004.

96. Tritos, Nicholas, et al. Estradiol-Induced Anorexia Is Independent of Leptin and Melanin Concentrating Hormone. Obesity Research. 12:716-724.2004.

97. Tu, Yojun, et al. C75 Alteres Central and Peripheral Gene Expression to Reduce Food Intake and Increase Energy Expenditure. Endocrinology. 146:486-493. 2005.

98. Valet, Philippe, et al. Expression of Human a2-Adrenergic Receptors in Adipose Tissue of ß3-Adrenergic Receptor-deficient Mice Promotes Diet-induced Obesity. The Journal of Biological Chemistry. 275:34797-34802. 2000.

99. Van Heek, Margaret, et al. Diet-induced Obese Mice develop Peripheral, but Not Central, Resistance to Leptin. J. Clin. Invest. 99:385-390. 1997.

100. Vidal-Puig, et al. Energy Metabolism is Uncoupling Protein 3 Gene Knockout Mice. The Journal of Biological Chemistry. 275:16258-16266. 2000.

101. Villena, Josep, et al. Induced Adiposity and Adipocyte Hypertrophy in Mice Lacking the AMP-Activated Protein Kinase-a2 Subunit. Diabetes. 53:2242-2249. 2004.

102. Wang, Wei, et al. GDF-3 is an adipogenic cytokine under high fat dietary condition. Biochemical and Biophysical Research Communications. 321:1024-1031. 2004.

103. Wei, P., et al. Glomerular structural and functional changes in a high-fat diet mouse model of early-stage Type 2 diabetes. Diabetologia. 47:1541-1549. 2004.

104. Weisberg, Stuart, et al. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112:1796-1808.2003.

105. Weisberg, Stuart, et al. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J. Clin. Invest. 116:115-124. 2006.

106. Werner, Eric, et al. Insulin Resistance Due to Phosphorylation of Insulin Receptor Substrate-1 at Serine 302. The Journal of Biological Chemistry. 279:35298-35305. 2004.

107. Xu, Haiyan, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest. 112:1821-1830. 2003.

108.Yamashita, Tadashi, et al. Enhanced insulin sensitivity in mice lacking ganglioside GM3. PNAS. 6: 3445-3449. 2003.

109. Yang, Jinzeng & Zhao, Baoping. Postnatal Expression of Myostatin PropMolecular Reproduction and Development. 73:462-469. 2006.

110. Yu, Ying, et al. Role of PYK2 in the development of obesity and insulin resistance. Biochemical and Biophysical Research Communications. 334:1085-1091. 2005.

111. Yu, Xing Xian, et al. Antisense Oligonucleotide Reduction of DGAT2 Expression Improves Hepatic Steatosis and Hyperlipidemia in Obese Mice. Hepatology. 42:362-371. 2005.

112. Zhao, Baoping, et al. Transgenic expression of myostatin propeptide prevents diet-induced obesity and insulin resistance. Biochemical and Biophysical Research Comunications. 337:248-255. 2005.

113. Ziotopoulou, Mary, et al. Differential expression of hypothalamic neuropeptides in the early phase of diet-induced obesity. Am. J. Physiol. Endocrinol. Metab. 279:E838-E845. 2000.

114. Banerjee, Ronadip, et al. Regulation of Fasted Blood Glucose by Resistin. Science. 303:1195-1198.2004.

115. Araki K, Masaki T, Katsuragi I, Tanaka K, Kakuma T, Yoshimatsu H. Telmisartan prevents obesity and increases the expression of uncoupling protein 1 in diet-induced obese mice. Hypertension. 2006;48:51-7.

116. Costford SR, Chaudhry SN, Salkhordeh M, Harper ME. Effects of the presence, absence, and overexpression of uncoupling protein-3 on adiposity and fuel metabolism in congenic mice. Am J Physiol Endocrinol Metab. 2006; 290:E1304-12.

117. Du X, Edelstein D, Obici S, Higham N, Zou MH, Brownlee M. Insulin resistance reduces arterial prostacyclin synthase and eNOS activities by increasing endothelial fatty acid oxidation. J Clin Invest. 2006; 116:1071-80.

118. Ito M, Suzuki J, Sasaki M, Watanabe K, Tsujioka S, Takahashi Y, Gomori A, Hirose H, Ishihara A, Iwaasa H, Kanatani A: Development of nonalcoholic steatohepatitis model through combination of high-fat diet and tetracycline with morbid obesity in mice. Hepatology Research. 2007;34:92-8.

119. Kobayashi M, Ikegami H, Fujisawa T, Nojima K, Kawabata Y, Noso S, Babaya N, Itoi-Babaya M, Yamaji K, Hiromine Y, Shibata M, Ogihara T: Prevention and treatment of obesity, insulin resistance, and diabetes by bile acid-binding resin. Diabetes. 2007;56:239-47.

120. Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 2007;117:175-84.

121. Lumeng CN, DeYoung SM, Bodzin JL, Saltiel AR: Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity. Diabetes. 2007;56:16-23.

122. Mandard S, Zandbergen F, van Straten E, Wahli W, Kuipers F, Muller M, Kersten S. The fasting-induced adipose factor/angiopoietin-like protein 4 is physically associated with lipoproteins and governs plasma lipid levels and adiposity. J Biol Chem. 2006; 281:934-44.

123. Millward CA, Heaney JD, Sinasac DS, Chu EC, Bederman IR, Gilge DA, Previs SF, Croniger CM. Mice with a deletion in the gene for CCAAT/enhancer-binding protein beta are protected against diet-induced obesity. Diabetes. 2007;56:161-7.

124. Patsouris D, Reddy JK, Muller M, Kersten S. Peroxisome proliferator-activated receptor alpha mediates the effects of high-fat diet on hepatic gene expression. Endocrinology. 2006;147:1508-16.

125. Phan LK, Chung WK, Leibel RL. The mahoganoid mutation (Mgrn1md) improves insulin sensitivity in mice with mutations in the melanocortin signaling pathway independently of effects on adiposity. Am J Physiol Endocrinol Metab. 2006;291:E611-20.

126. Qu S, Altomonte J, Perdomo G, He J, Fan Y, Kamagate A, Meseck M, Dong HH. Aberrant Forkhead box O1 function is associated with impaired hepatic metabolism. Endocrinology. 2006;147:5641-52.

127. Ro HS, Zhang L, Majdalawieh A, Kim SW, Wu X, Lyons PJ, Webber C, Ma H, Reidy SP, Boudreau A, Miller JR, Mitchell P, McLeod RS. Adipocyte enhancer-binding protein 1 modulates adiposity and energy homeostasis. Obesity. 2007;15:288-302.

128. Rodrigue-Way A, Demers A, Ong H, Tremblay A: A growth hormone-releasing peptide promotes mitochondrial biogenesis and a fat burning-like phenotype through scavenger receptor CD36 in white adipocytes. Endocrinology. 2007;148:1009-18.

129. Sheng G, Chang GQ, Lin JY, Yu ZX, Fang ZH, Rong J, Lipton SA, Li SH, Tong G, Leibowitz SF, Li XJ. Hypothalamic huntingtin-associated protein 1 as a mediator of feeding behavior. Nat Med. 2006;12:526-33.

130. Wolfgang MJ, Kurama T, Dai Y, Suwa A, Asaumi M, Matsumoto S, Cha SH, Shimokawa T, Lane MD. The brain-specific carnitine palmitoyltransferase-1c regulates energy homeostasis. Proc Natl Acad Sci. U S A. 2006;103:7282-7.

131. Xu AW, Ste-Marie L, Kaelin CB, Barsh GS. Inactivation of signal transducer and activator of transcription 3 in proopiomelanocortin (Pomc) neurons causes decreased pomc expression, mild obesity, and defects in compensatory refeeding. Endocrinology. 2007;148:72-80.

132. Yang JY, Lee SJ, Park HW, Cha YS. Effect of genistein with carnitine administration on lipid parameters and obesity in C57Bl/6J mice fed a high-fat diet. J Med Food. 2006;9:459-67.

133. Yi X, Maeda N. alpha-Lipoic acid prevents the increase in atherosclerosis induced by diabetes in apolipoprotein E-deficient mice fed high-fat/low-cholesterol diet. Diabetes. 2006;55:2238-44.

134. Yu R, Kim CS, Kwon BS, Kawada T. Mesenteric adipose tissue-derived monocyte chemoattractant protein-1 plays a crucial role in adipose tissue macrophage migration and activation in obese mice. Obesity. 2006;14:1353-62.

135. Zhao Z, Lange DJ, Voustianiouk A, MacGrogan D, Ho L, Suh J, Humala N,
Thiyagarajan M, Wang J, Pasinetti GM. A ketogenic diet as a potential novel therapeutic intervention in amyotrophic lateral sclerosis. BMC Neurosci. 2006;7:29.

136. Zorilla, EP, et al. Interleukin-18 controls energy homeostasis by suppressing appetite and feed efficiency. PNAS. 2007, 104:26:11097–11102.

137. Koonen,D PY, et al. Increased Hepatic CD36 Expression Contributes to Dyslipidemia Associated With Diet-Induced Obesity. Diabetes. 2007, 56:2863- 2871.

138. Lin, C, Mei-chin Yin. Effects of cysteine-containing compounds on biosynthesis of triacylglycerol and cholesterol and anti-oxidative protection in liver from mice consuming a high-fat diet. British Journal of Nutrition.2008, 99, 37–43.

139. Anderson SR, Gilge DA, Steiber AL, Previs SF. Diet-induced obesity alters protein synthesis: tissue-specific effects in fasted versus fed mice. Metabolism. 2008 Mar;57(3):347-54.

140. Bartels ED, Bang CA, Nielsen LB. Early atherosclerosis and vascular inflammation in mice with diet-induced type 2 diabetes. Eur J Clin Invest. 2009 Mar;39(3):190-9.

141. Bederman IR, Previs SF. Hormonal regulation of intracellular lipolysis in C57BL/6J mice: effect of diet-induced adiposity and data normalization. Metabolism. 2008 Oct;57(10):1405-13.

142. Bradley RL, Jeon JY, Liu FF, Maratos-Flier E. Voluntary exercise improves insulin sensitivity and adipose tissue inflammation in diet-induced obese mice. Am J Physiol Endocrinol Metab. 2008 Sep;295(3):E586-94. Epub 2008 Jun 24.

143. Chadt A, Leicht K, Deshmukh A, Jiang LQ, Scherneck S, Bernhardt U, Dreja T, Vogel H, Schmolz K, Kluge R, Zierath JR, Hultschig C, Hoeben RC, Schürmann A, Joost HG, Al-Hasani H. Tbc1d1 mutation in lean mouse strain confers leanness and protects from diet-induced obesity. Nat Genet. 2008 Nov;40(11):1354-9. Epub 2008 Oct 19.

144. Crouthamel MC, Kahana JA, Korenchuk S, Zhang SY, Sundaresan G, Eberwein DJ, Brown KK, Kumar R. Mechanism and management of AKT inhibitor-induced hyperglycemia. Clin Cancer Res. 2009 Jan 1;15(1):217-25.

145. Ebato C, Uchida T, Arakawa M, Komatsu M, Ueno T, Komiya K, Azuma K, Hirose T, Tanaka K, Kominami E, Kawamori R, Fujitani Y, Watada H. Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metab. 2008 Oct;8(4):325-32.

146. Fang CX, Dong F, Thomas DP, Ma H, He L, Ren J. Hypertrophic cardiomyopathy in high-fat diet-induced obesity: role of suppression of forkhead transcription factor and atrophy gene transcription. Am J Physiol Heart Circ Physiol. 2008 Sep;295(3):H1206-H1215. Epub 2008 Jul 18.

147. Feige JN, Lagouge M, Canto C, Strehle A, Houten SM, Milne JC, Lambert PD, Mataki C, Elliott PJ, Auwerx J. Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation. Cell Metab. 2008 Nov;8(5):347-58.

148. Féral CC, Neels JG, Kummer C, Slepak M, Olefsky JM, Ginsberg MH. Blockade of alpha4 integrin signaling ameliorates the metabolic consequences of high-fat diet-induced obesity. Diabetes. 2008 Jul;57(7):1842-51. Epub 2008 Apr 21.

149. Fukuchi Y, Hiramitsu M, Okada M, Hayashi S, Nabeno Y, Osawa T, Naito M. Lemon Polyphenols Suppress Diet-induced Obesity by Up-Regulation of mRNA Levels of the Enzymes Involved in beta-Oxidation in Mouse White Adipose Tissue. J Clin Biochem Nutr. 2008 Nov;43(3):201-9. Epub 2008 Oct 31.

150. Gong Z, Huang C, Sheng X, Zhang Y, Li Q, Wang MW, Peng L, Zang YQ. The role of tanshinone IIA in the treatment of obesity through peroxisome proliferator-activated receptor gamma antagonism. Endocrinology. 2009 Jan;150(1):104-13. Epub 2008 Sep 25.

151. Hong J, Smith RR, Harvey AE, Núñez NP. Alcohol consumption promotes insulin sensitivity without affecting body fat levels. Int J Obes (Lond). 2009 Feb;33(2):197-203. Epub 2009 Jan 6.

152. Hong J, Stubbins RE, Smith RR, Harvey AE, Núñez NP. Differential susceptibility to obesity between male, female and ovariectomized female mice. Nutr J. 2009 Feb 17;8:11.

153. Ikehara O, Kawasaki N, Maezono K, Komatsu M, Konishi A. Acute and chronic treatment of L-isoleucine ameliorates glucose metabolism in glucose-intolerant and diabetic mice. Biol Pharm Bull. 2008 Mar;31(3):469-72.

164. Ito M, Gomori A, Suzuki J, Tsujioka S, Sasaki M, Matsuda M, Bednarek MA, Ito M, Ishihara A, Iwaasa H, Macneil DJ, Kanatani A. Antagonism of central melanin-concentrating hormone 1 receptor alleviates steatohepatitis in mice. J Endocrinol. 2008 Aug;198(2):309-15. Epub 2008 Jun 3.

165. Kanda T, Brown JD, Orasanu G, Vogel S, Gonzalez FJ, Sartoretto J, Michel T, Plutzky J. PPARgamma in the endothelium regulates metabolic responses to high-fat diet in mice. J Clin Invest. 2009 Jan;119(1):110-24. doi: 10.1172/JCI36233. Epub 2008 Dec 8.

166. Kiefer FW, Zeyda M, Todoric J, Huber J, Geyeregger R, Weichhart T, Aszmann O, Ludvik B, Silberhumer GR, Prager G, Stulnig TM. Osteopontin expression in human and murine obesity: extensive local up-regulation in adipose tissue but minimal systemic alterations. Endocrinology. 2008 Mar;149(3):1350-7. Epub 2007 Nov 29.

167. Kim SJ, Nian C, Doudet DJ, McIntosh CH. Inhibition of dipeptidyl peptidase IV with sitagliptin (MK0431) prolongs islet graft survival in streptozotocin-induced diabetic mice. Diabetes. 2008 May;57(5):1331-9. Epub 2008 Feb 25.

168.La Merrill M, Baston DS, Denison MS, Birnbaum LS, Pomp D, Threadgill DW. Mouse breast cancer model-dependent changes in metabolic syndrome-associated phenotypes caused by maternal dioxin exposure and dietary fat. Am J Physiol Endocrinol Metab. 2009 Jan;296(1):E203-10. Epub 2008 Oct 7.

169. Lee J, Chae K, Ha J, Park BY, Lee HS, Jeong S, Kim MY, Yoon M. Regulation of obesity and lipid disorders by herbal extracts from Morus alba, Melissa officinalis, and Artemisia capillaris in high-fat diet-induced obese mice. J Ethnopharmacol. 2008 Jan 17;115(2):263-70. Epub 2007 Oct 5.

170. Morgan DA, Thedens DR, Weiss R, Rahmouni K. Mechanisms mediating renal sympathetic activation to leptin in obesity. Am J Physiol Regul Integr Comp Physiol. 2008 Dec;295(6):R1730-6. Epub 2008 Sep 24.

171. Ozcan L, Ergin AS, Lu A, Chung J, Sarkar S, Nie D, Myers MG Jr, Ozcan U.Endoplasmic Reticulum Stress Plays a Central Role in Development of Leptin Resistance. Cell Metab. 2009 Jan 7;9(1):35-51.

172. Prior RL, Wu X, Gu L, Hager TJ, Hager A, Howard LR. Whole berries versus berry anthocyanins: interactions with dietary fat levels in the C57BL/6J mouse model of obesity. J Agric Food Chem. 2008 Feb 13;56(3):647-53. Epub 2008 Jan 23.

173. Qatanani M, Szwergold NR, Greaves DR, Ahima RS, Lazar MA. Macrophage-derived human resistin exacerbates adipose tissue inflammation and insulin resistance in mice. J Clin Invest. 2009 Feb 2. pii: 37273. doi: 10.1172/JCI37273.

174. Quinn LS, Anderson BG, Strait-Bodey L, Stroud AM, Argilés JM. Oversecretion of interleukin-15 from skeletal muscle reduces adiposity. Am J Physiol Endocrinol Metab. 2009 Jan;296(1):E191-202. Epub 2008 Nov 11.

175. Roy C, Paglialunga S, Fisette A, Schrauwen P, Moonen-Kornips E, St-Onge J, Hesselink MK, Richard D, Joanisse DR, Cianflone K. Shift in metabolic fuel in acylation-stimulating protein-deficient mice following a high-fat diet. Am J Physiol Endocrinol Metab. 2008 Jun;294(6):E1051-9. Epub 2008 Apr 8.

176. Shi H, Strader AD, Sorrell JE, Chambers JB, Woods SC, Seeley RJ. Sexually different actions of leptin in proopiomelanocortin neurons to regulate glucose homeostasis. Am J Physiol Endocrinol Metab. 2008 Mar;294(3):E630-9. Epub 2008 Jan 2.

177. Shimizu H, Oh-I S, Hashimoto K, Nakata M, Yamamoto S, Yoshida N, Eguchi H, Kato I, Inoue K, Satoh T, Okada S, Yamada M, Yada T, Mori M. Peripheral administration of nesfatin-1 reduces food intake in mice: the leptin-independent mechanism. Endocrinology. 2009 Feb;150(2):662-71. Epub 2008 Oct 16.

178. Singh R, Wang Y, Xiang Y, Tanaka KE, Gaarde WA, Czaja MJ. Differential effects of JNK1 and JNK2 inhibition on murine steatohepatitis and insulin resistance. Hepatology. 2009 Jan;49(1):87-96.

179. Takanabe R, Ono K, Abe Y, Takaya T, Horie T, Wada H, Kita T, Satoh N, Shimatsu A, Hasegawa K. Up-regulated expression of microRNA-143 in association with obesity in adipose tissue of mice fed high-fat diet. Biochem Biophys Res Commun. 2008 Nov 28;376(4):728-32. Epub 2008 Sep 20.

180. Teegarden SL, Bale TL. Effects of stress on dietary preference and intake are dependent on access and stress sensitivity. Physiol Behav. 2008 Mar 18;93(4-5):713-23. Epub 2007 Nov 28.

181. Thornton SJ, Wong E, Lee SD, Wasan KM. Effect of dietary fat on hepatic liver X receptor expression in P-glycoprotein deficient mice: implications for cholesterol metabolism. Lipids Health Dis. 2008 Jun 11;7:21.

182. Trevaskis JL, Meyer EA, Galgani JE, Butler AA. Counterintuitive effects of double-heterozygous null melanocortin-4 receptor and leptin genes on diet-induced obesity and insulin resistance in C57BL/6J mice. Endocrinology. 2008 Jan;149(1):174-84. Epub 2007 Oct 11.

183. Tsuneki H, Murata S, Anzawa Y, Soeda Y, Tokai E, Wada T, Kimura I, Yanagisawa M, Sakurai T, Sasaoka T. Age-related insulin resistance in hypothalamus and peripheral tissues of orexin knockout mice. Diabetologia. 2008 Apr;51(4):657-67. Epub 2008 Feb 7.

184. Villena JA, Choi CS, Wang Y, Kim S, Hwang YJ, Kim YB, Cline G, Shulman GI, Sul HS. Resistance to high-fat diet-induced obesity but exacerbated insulin resistance in mice overexpressing preadipocyte factor-1 (Pref-1): a new model of partial lipodystrophy. Diabetes. 2008 Dec;57(12):3258-66. Epub 2008 Oct 3.

185. Yu XX, Pandey SK, Booten SL, Murray SF, Monia BP, Bhanot S. Reduced adiposity and improved insulin sensitivity in obese mice with antisense suppression of 4E-BP2 expression. Am J Physiol Endocrinol Metab. 2008 Mar;294(3):E530-9. Epub 2008 Jan 15.

186. Zhang W, Chai B, Li JY, Wang H, Mulholland MW. Effect of des-acyl ghrelin on adiposity and glucose metabolism. Endocrinology. 2008 Sep;149(9):4710-6. Epub 2008 Jun 5.

187. Zuberi AR, Townsend L, Patterson L, Zheng H, Berthoud HR. Increased adiposity on normal diet, but decreased susceptibility to diet-induced obesity in mu-opioid receptor-deficient mice. Eur J Pharmacol. 2008 May 6;585(1):14-23. Epub 2008 Feb 26.

DIO Rat Models

1. Bagnasco, Micheka, et al. Leptin Expression in Hypothalmic PVN Reverses Dietary Obesity and Hyper Insulinemia but Stimulates Ghrelin. Obesity Research. 12: 1463-1470. 2003.

2. Borowsky, Beth, et al. Antidepressant, anxiolytic and anorectic effects of a melanin-concentrating hormone-1 receptor antagonist. 8:825-830. 2002.

3. Chan, Catherine, et al. Increased Uncoupling Protein-2 in ß-cells Are Associated Glucose-Stimulated Insulin Secretion. Diabetes. 50:1302-1310.

4. Chen, LI & Nyomba, B.L.G. Glucose Intolerance and Resintin Expression in Rat Offspring Exposed to Ethanol in Utero : Modulation by Postnatal High-Fat Diet. Endocrinology. 144:500-508. 2002.

5. Dakin, Catherine, et al. Peripheral Oxyntomodulation Reduces Food Intake and Body Weight Gain in Rats. Endocrinology. 145:2687-2695. 2003.

6. De Souza, Cláudio, et al. Consumption of a fat-Rich Diet Activates a Proinflammatory Response and 7. Induced Insulin Resistance in the Hypothalmus. Endocrinology. 146:4192-4199. 2004.

7. Drake, Amanda, et al. Reduced Adipose Glucocorticoid Reactivation and Increased Hepatic Glucocorticoid Clearance as an Early Adaptation to High-Fat Feeding in Winstar Rats. Endocrinology. 146:913-919.2004

8. Dube, Michael, ete al. Central Leptin Gene Therapy Blocks High-Fat Diet-Induced Weight Gain, Hyperleptinemia, and Hyperinsulinemia. Diabetes. 51:1729-1736. 2002.

9. Farley, Constance , et al. Meal Pattern Analysis of Diet-Induced Obesity in Susceptibole and Resistant Rats. Obesity Research. 11:845-851. 2003.

10. Fu, Jin, et al. Oleoylethanolamide, an endogenous PPAR-a agonist, lowers body weight and hyperlipidemia in obese rats. Neuropharmacology. 48:1147-1153. 2005.

11. Ghibaudi , Lorraine , et al. Fat Intake Affects Adiposity, Comorbidity Factors, and Energy Metabolism of Sprague-Dawley Rats. Obesity Research. 10:956-963. 2002.

12. Guzmán, Manuel, et al. Oleoylethanolamide Stimulates Lipolysis by Activating the Nuclear Receptor Peroxisome Proliferator-activated Receptor a (PPAR-a). The Journal of Biological Chemistry. 279:27849-27854. 2004.

13. He, Zhibin, et al. Modulation of carbohydrate response element-binding protein gene expression in 3T3-L1 adipocytes and rat adipose tissue. American Journal of Endocrinol Metabolism. 287: E424-E430. 2004.

14. Gao, Jun, et al. Characterization of diet-induced obese rats that develop persistent obesity after 6 months of high-fat followed by 1 month of low-fat diet. Brain Research. 936:87-90. 2002.

15. Kishino, Eriko, et al. A Mixture of the Salacia reticulate (Kotala himbutu) Aqueous Extract and Cyclodextrin Reduced the Accumuournal of Nutrition. 136: 433-439. 2006.

16. Kowalski, Timothy, et al. Melanin-Containing hormone-1 receptor antagonism decreased feeding by reducing meal size. European Journal of Pharmacology. 497:41-47. 2004.

17. McNeel, Ronald & Mersmann, Harry. Low- and High-Carbohydrate Diets:Body Composition Differences in Rats. Obesity Research. 13:1651-1660.2005.

18. Morin, Catherine, et al. Adipose Tissue-Derived Tumor Necrosis Factor Activity Correlated with Fat Cell Size But Not Insulin Action in aging rats. Endocrinology. 139:4998-5005. 2005.

19. Nordhdein, Ulrich & Hofbaur, Karl. Stimulation of NPY Y 2 receptors by PYY 3-36 reveals divergent cardiovascular effects of endogenous NPY in rats on different dietary regimens. Am. J. Physiol. Regul. Integr. Comp. Physiol. 286:R138-R142. 2004.

20. Novak, Colleen, Kotz, Catherine, & Levine, James. Central orexin sensitivity, physical activity, and obesity in diet-induced obese and diet-resistant rats. American Journal of Physiology. 290:396-403. 2005.

21. Ogilvie, Kathleen, et al. Activation of the Retinoid X Receptor Suppresses Appetite in the Rat. Endocrinology. 125:565-573. 2004.

22. Otukonyong, Effiong, et al. High-fat Diet-induced Ultradian Leptin and Insulin Hypersecretion are Absent in Obesity-resistant Rats. Obesity Research. 13:991-999. 2005.

23. Relling, David, et al. High-fat diet-induced juvenile obesity leads to cardiomyocyte dysfunction and upregulation of Foxo3a transcription factor independent of lipotoxicity and apoptosis. Journal of Hypertension. 24:549-561.2005.

24. Shklyaev, Stanislav, et al. Sustained peripheral expression of transgene adiponectin offsets the development of diet-induced obesity in rats. PNAS. 100:14217-14222.2003.

25. Stavinoha, Melissa, et al. Diurnal variations in the responsiveness of cardiac and skeletal muscle to fatty acids. Am. J. Physiol. Endocrinol. Metab. 287:E878-E887. 2004.

26. Taheri, Shahrad, et al. Distribution and quantification of immunoreactive orexin A in fat tissues. FEBS Letters 457:157-161.1999.

27. Tang, Haiying, et al. High-resolution magnetic resonance imaging tracks changes in organ and tissue mass in obese and aging rats. Am. J. Regulatory Integrative Comp. Physiol. 282:R890-R899.2002.

28. Vickers, M.H. Neonatal Leptin Treatment Reverses Developmental Programming. Endocrinology. 146:4211-4216.2005.

29. Aprahamian CJ, Tekant G, Chen M, Yagmurlu A, Yang YK, Loux T, Harmon CM. A rat model of childhood diet-induced obesity: Roux-en-Y gastric bypass induced changes in metabolic parameters and gastric peptide ghrelin. Pediatr Surg Int. 2007 Jul;23(7):653-7. Epub 2007 May 16.

30. Bi S, Chen J, Behles RR, Hyun J, Kopin AS, Moran TH. Differential body weight and feeding responses to high-fat diets in rats and mice lacking cholecystokinin 1 receptors. Am J Physiol Regul Integr Comp Physiol. 2007 Jul;293(1):R55-63. Epub 2007 Apr 4.

31. Brown RE, Imran SA, Ur E, Wilkinson M. KiSS-1 mRNA in adipose tissue is regulated by sex hormones and food intake. Mol Cell Endocrinol. 2008 Jan 16;281(1-2):64-72. Epub 2007 Nov 1.

32. Chelikani PK, Haver AC, Reidelberger RD. Intermittent intraperitoneal infusion of peptide YY(3-36) reduces daily food intake and adiposity in obese rats. Am J Physiol Regul Integr Comp Physiol. 2007 Jul;293(1):R39-46. Epub 2007 Apr 11.

33. Deushi M, Nomura M, Kawakami A, Haraguchi M, Ito M, Okazaki M, Ishii H, Yoshida M. Ezetimibe improves liver steatosis and insulin resistance in obese rat model of metabolic syndrome. FEBS Lett. 2007 Dec 11;581(29):5664-70. Epub 2007 Nov 20.

34. Esler WP, Rudolph J, Claus TH, Tang W, Barucci N, Brown SE, Bullock W, Daly M, Decarr L, Li Y, Milardo L, Molstad D, Zhu J, Gardell SJ, Livingston JN, Sweet LJ. Small-molecule ghrelin receptor antagonists improve glucose tolerance, suppress appetite, and promote weight loss. Endocrinology. 2007 Nov;148(11):5175-85. Epub 2007 Jul 26.

35. Hägerkvist R, Jansson L, Welsh N. Imatinib mesylate improves insulin sensitivity and glucose disposal rates in rats fed a high-fat diet. Clin Sci (Lond). 2008 Jan;114(1):65-71.

36. Johnson JA, Trasino SE, Ferrante AW Jr, Vasselli JR. Prolonged decrease of adipocyte size after rosiglitazone treatment in high- and low-fat-fed rats. Obesity (Silver Spring). 2007 Nov;15(11):2653-63.

37. Judge MK, Zhang J, Tümer N, Carter C, Daniels MJ, Scarpace PJ. Prolonged hyperphagia with high-fat feeding contributes to exacerbated weight gain in rats with adult-onset obesity. Am J Physiol Regul Integr Comp Physiol. 2008 Sep;295(3):R773-80. Epub 2008 Jul 2.

38. Li G, Zhang Y, Cheng KY, Scarpace PJ. Lean rats with hypothalamic pro-opiomelanocortin overexpression exhibit greater diet-induced obesity and impaired central melanocortin responsiveness. Diabetologia. 2007 Jul;50(7):1490-9. Epub 2007 May 16.

39. Matveyenko AV, Gurlo T, Daval M, Butler AE, Butler PC. Successful versus failed adaptation to high-fat diet-induced insulin resistance: the role of IAPP-induced beta-cell endoplasmic reticulum stress. Diabetes. 2009 Apr;58(4):906-16. Epub 2009 Jan 16.

40. Mitra A, Alvers KM, Crump EM, Rowland NE. Effect of high-fat diet during gestation, lactation, or postweaning on physiological and behavioral indexes in borderline hypertensive rats. Am J Physiol Regul Integr Comp Physiol. 2009 Jan;296(1):R20-8. Epub 2008 Oct 29.

41. Nagae A, Fujita M, Kawarazaki H, Matsui H, Ando K, Fujita T. Sympathoexcitation by oxidative stress in the brain mediates arterial pressure elevation in obesity-induced hypertension. Circulation. 2009 Feb 24;119(7):978-86. Epub 2009 Feb 9.

42. Nogueiras R, López M, Lage R, Perez-Tilve D, Pfluger P, Mendieta-Zerón H, Sakkou M, Wiedmer P, Benoit SC, Datta R, Dong JZ, Culler M, Sleeman M, Vidal-Puig A, Horvath T, Treier M, Diéguez C, Tschöp MH. Bsx, a novel hypothalamic factor linking feeding with locomotor activity, is regulated by energy availability. Endocrinology. 2008 Jun;149(6):3009-15. Epub 2008 Feb 28.

43. Priego T, Sánchez J, Picó C, Palou A. Sex-differential expression of metabolism-related genes in response to a high-fat diet. Obesity (Silver Spring). 2008 Apr;16(4):819-26. Epub 2008 Jan 24.

44. Vickers MH, Gluckman PD, Coveny AH, Hofman PL, Cutfield WS, Gertler A, Breier BH, Harris M. The effect of neonatal leptin treatment on postnatal weight gain in male rats is dependent on maternal nutritional status during pregnancy. Endocrinology. 2008 Apr;149(4):1906-13. Epub 2008 Jan 10.

45. Yang L, Scott KA, Hyun J, Tamashiro KL, Tray N, Moran TH, Bi S. Role of dorsomedial hypothalamic neuropeptide Y in modulating food intake and energy balance. J Neurosci. 2009 Jan 7;29(1):179-90.

Hypertension
High/Low Sodium Diets

1. Collister J.P, Hornfeldt B.J., Osborn J.W. Hypotensive Response to Losartan in Normal Rats. Hypertension. 27:598-606. 1996.

2. Collister J.P. & Osborn J. W. Area postrema lesion attenuates the long-term hypotensive effects of losartan in salt-replete rats. Am. J. Physiol. 274:R357-R366. 1998.

3. Collister J.P. & Osborn J. W. The area postrema does not modulate the long-term salt sensitivity of arterial pressure. Am. J. Physiol. 275:R1209-R1217. 1998.

4. Osborn JW & Hornfeldt BJ. Arterial baroreceptor denervation impairs long-term regulation of arterial pressure during dietary salt loading. Am J Physiol. 1998; 275: H1558-1566. (Heart Circ. Physiol 44)

5. Hendel MD, Collister JP. Contribution of the subfornical organ to angiotensin II-induced hypertension. Am J Physiol Heart Circ Physiol. 2005 Feb;288(2):H680-5. Epub 2004 Sep 30.

6. Fenton RA, Chou CL, Stewart GS, Smith CP, Knepper MA. Urinary concentrating defect in mice with selective deletion of phloretin-sensitive urea transporters in the renal collecting duct. Proc Natl Acad Sci U S A. 2004 May 11;101(19):7469-74. Epub 2004 May 3.

7. Fine DM, Ariza-Nieto P, Osborn JW. Does whole body autoregulation mediate the hemodynamic responses to increased dietary salt in rats with clamped ANG II? Am J Physiol Heart Circ Physiol. 2003 Dec;285(6):H2670-8. Epub 2003 Aug 7.

Rabbit Diets

1. Letter to Editor. Atherosclerosis. 1986; 60:291-293.

2. Kroon , PA (Original Diet Info.)Atherosclerosis. 1982; 44: 41-48.

3. Krause BR et al. ACAT inhibition decreases LDL cholesterol in rabbits fed a cholesterol-free diet. Marked changes in LDL cholesterol without changes in LDL receptor mRNA abundance. Arterioscler Thromb. 1994; 14:598-604.

4. Auerbach BJ et al. Comparative effects of HMG-CoA reductase inhibitors on apoB production in the casein-fed rabbit: atorvastatin versus lovastatin. Atherosclerosis. 1995; 115:173-80.

5. Aikawa M, Rabkin E, Voglic SJ, Shing H, Nagai R, Schoen FJ, Libby P. Lipid lowering promotes accumulation of mature smooth muscle cells expressing smooth muscle myosin heavy chain isoforms in rabbit atheroma. Circ Res. 1998 Nov 16;83(10):1015-26.

6. Aikawa M, Rabkin E, Okada Y, Voglic SJ, Clinton SK, Brinckerhoff CE, Sukhova GK, Libby P. Lipid lowering by diet reduces matrix metalloproteinase activity and increases collagen content of rabbit atheroma: a potential mechanism of lesion stabilization. Circulation. 1998 Jun 23;97(24):2433-44.

7. Aikawa M, Sugiyama S, Hill CC, Voglic SJ, Rabkin E, Fukumoto Y, Schoen FJ, Witztum JL, Libby P. Lipid lowering reduces oxidative stress and endothelial cell activation in rabbit atheroma. Circulation. 2002 Sep 10;106(11):1390-6.

8. Chi L, Gibson G, Peng YW, Bousley R, Brammer D, Rekhter M, Chen J, Leadley R. Characterization of a tissue factor/factor VIIa-dependent model of thrombosis in hypercholesterolemic rabbits. J Thromb Haemost. 2004 Jan;2(1):85-92.

9. Koga T, Kwan P, Zubik L, Ameho C, Smith D, Meydani M. Vitamin E supplementation suppresses macrophage accumulation and endothelial cell expression of adhesion molecules in the aorta of hypercholesterolemic rabbits. Atherosclerosis. 2004 Oct;176(2):265-72.

10. Rajamannan NM, Subramaniam M, Springett M, Sebo TC, Niekrasz M, McConnell JP, Singh RJ, Stone NJ, Bonow RO, Spelsberg TC. Atorvastatin inhibits hypercholesterolemia-induced cellular proliferation and bone matrix production in the rabbit aortic valve. Circulation. 2002 Jun 4;105(22):2660-5.

11. Risovic V, Man D, Sivak O, Lee SD, Wasan KM. Assessing lipid lowering and plasma cholesteryl ester transfer protein activity of simvastatin following administration to rabbits fed a high fat/cholesterol diet. Drug Dev Ind Pharm. 2006 Jun;32(5):609-15.

12. Sirol M, Itskovich VV, Mani V, Aguinaldo JG, Fallon JT, Misselwitz B, Weinmann HJ, Fuster V, Toussaint JF, Fayad ZA. Lipid-rich atherosclerotic plaques detected by gadofluorine-enhanced in vivo magnetic resonance imaging. Circulation. 2004 Jun 15;109(23):2890-6. Epub 2004 Jun 7.

Hamster Diets

1. Weber RV, Buckley MC, Fried SK & Kral JG. Subcutaneous lipectomy causes a metabolic syndrome in hamsters. Am J Physiol Regulatory Comp Physiol. 2000; 279: R936-943

2. Weber, R.V., et al. Subcutaneous lipectomy causes a metabolic syndrome in hamsters. Am. J. Physiol. Regulatory Integrative Comp. Physiol. 279:R936-R943, 2000.

3. Abidi P, Chen W, Kraemer FB, Li H, Liu J. The medicinal plant goldenseal is a natural LDL-lowering agent with multiple bioactive components and new action mechanisms. J Lipid Res. 2006 Oct;47(10):2134-47. Epub 2006 Aug 2.

4. Alexaki A, Wilson TA, Atallah MT, Handelman G, Nicolosi RJ. Hamsters fed diets high in saturated fat have increased cholesterol accumulation and cytokine production in the aortic arch compared with cholesterol-fed hamsters with moderately elevated plasma non-HDL cholesterol concentrations. J Nutr. 2004 Feb;134(2):410-5.

5. Delaney B, Nicolosi RJ, Wilson TA, Carlson T, Frazer S, Zheng GH, Hess R, Ostergren K, Haworth J, Knutson N. Beta-glucan fractions from barley and oats are similarly antiatherogenic in hypercholesterolemic Syrian golden hamsters. J Nutr. 2003 Feb;133(2):468-75.

6. Dorfman SE, Smith DE, Osgood DP, Lichtenstein AH. Study of diet-induced changes in lipoprotein metabolism in two strains of Golden-Syrian hamsters. J Nutr. 2003 Dec;133(12):4183-8.

7. Li N, Chen X, Liao J, Yang G, Wang S, Josephson Y, Han C, Chen J, Huang MT, Yang CS. Inhibition of 7,12-dimethylbenz[a]anthracene (DMBA)-induced oral carcinogenesis in hamsters by tea and curcumin. Carcinogenesis. 2002 Aug;23(8):1307-13.

8. Nicolosi RJ, Wilson TA, Handelman G, Foxall T, Keaney JF, Vita JA. Decreased aortic early atherosclerosis in hypercholesterolemic hamsters fed oleic acid-rich TriSun oil compared to linoleic acid-rich sunflower oil. J Nutr Biochem. 2002 Jul;13(7):392-402.

9. Rizvi F, Puri A, Bhatia G, Khanna AK, Wulff EM, Rastogi AK, Chander R. Antidyslipidemic action of fenofibrate in dyslipidemic-diabetic hamster model. Biochem Biophys Res Commun. 2003 May 30;305(2):215-22.

10. Wilson TA, Nicolosi RJ, Delaney B, Chadwell K, Moolchandani V, Kotyla T, Ponduru S, Zheng GH, Hess R, Knutson N, Curry L, Kolberg L, Goulson M, Ostergren K. Reduced and high molecular weight barley beta-glucans decrease plasma total and non-HDL-cholesterol in hypercholesterolemic Syrian golden hamsters.

Added Test Compounds

1. Davis HR, Pula KK, Alton KB, Burrier RE & Watkins RW. The Synergistic Hypocholesterolemic Activity of the Potent Cholesterol Absorption Inhibitor, Ezetimibe, in Combination With 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Inhibitors in Dogs. Metabolism. 50:1234-1241. 2001

2. van Heek M, Austin TM, Farley C, Cook JA, Tetzloff GG & Davis HR. Ezetimibe, a Potent Cholesterol Absorption Inhibitor, Normalizes Combined Dyslipidemia in Obese Hyperinsulinemic Hamsters. Diabetes. 50:1330-1335. 2001

3. van Heek M, Compton DS & Davis HR. The cholesterol absorption inhibitor, ezetimibe, decreases diet-unduced hypercholesterolemia in monkeys. European Journal of Pharmacology. 415: 79-84. 2001

4. van Heek M, France CF, Compton DS, Mcleod RL, Yumibe NP, Alton KB, Sybertz EJ & Davis HR. In Vivo Metabolism-Based Discovery of a Potent Cholesterol Absorption Inhibitor, SCH58235, in the Rat and Rhesus Monkey through the Identification of the Active Metabolites of SCH48461. JPET. 283: 157-163. 1997

5. van Heek M, Farley C, Compton DS, Hoos L & Davis HR. Ezetimibe selectively inhibits intestinal cholesterol absorption in rodents in the presence and absence of exocrine pancreatic function. BJP. 134:409-417. 2001

6. Shepherd J. The role of the exogenous pathway in hypercholesterolemia. Eur Heart J Supplements. Vol.3 (Suppl) 2001

7. Catapano AL. Ezetimibe: a selective inhibitor of cholesterol absorption. Eur Heart J Supplements. Vol. 3 (Suppl) 2001

8. Stein E. Results of phase I/II clinical trials with ezetimibe, a novel selective cholesterol absorption inhibitor. Eur Heart J Supplements. Vol 3 (Suppl) 2001

9. Leitersdorf E. Cholesterol absorption inhibition: filling an unmet need in lipid-lowering management. Eur Heart J Supplements. Vol 3 (Suppl) 2001

10. Bose M, Lambert JD, Ju J, Reuhl KR, Shapses SA, Yang CS. The major green tea polyphenol, (-)-epigallocatechin-3-gallate, inhibits obesity, metabolic syndrome, and fatty liver disease in high-fat-fed mice. J Nutr. 2008 Sep;138(9):1677-83.

11. Bradley MN, Hong C, Chen M, Joseph SB, Wilpitz DC, Wang X, Lusis AJ, Collins A, Hseuh WA, Collins JL, Tangirala RK, Tontonoz P. Ligand activation of LXR beta reverses atherosclerosis and cellular cholesterol overload in mice lacking LXR alpha and apoE. J Clin Invest. 2007 Aug;117(8):2337-46.

12. Dol-Gleizes F, Paumelle R, Visentin V, Marés AM, Desitter P, Hennuyer N, Gilde A, Staels B, Schaeffer P, Bono F. Rimonabant, a selective cannabinoid CB1 receptor antagonist, inhibits atherosclerosis in LDL receptor-deficient mice. Arterioscler Thromb Vasc Biol. 2009 Jan;29(1):12-8. Epub 2008 Oct 9.

13. Jandacek RJ, Tso P. Enterohepatic circulation of organochlorine compounds: a site for nutritional intervention. J Nutr Biochem. 2007 Mar;18(3):163-7.

14. Johnson JA, Trasino SE, Ferrante AW Jr, Vasselli JR. Prolonged decrease of adipocyte size after rosiglitazone treatment in high- and low-fat-fed rats. Obesity (Silver Spring). 2007 Nov;15(11):2653-63.

15. Kanda T, Brown JD, Orasanu G, Vogel S, Gonzalez FJ, Sartoretto J, Michel T, Plutzky J. PPARgamma in the endothelium regulates metabolic responses to high-fat diet in mice. J Clin Invest. 2009 Jan;119(1):110-24. doi: 10.1172/JCI36233. Epub 2008 Dec 8.

16. Karrasch T, Kim JS, Jang BI, Jobin C. The flavonoid luteolin worsens chemical-induced colitis in NF-kappaB(EGFP) transgenic mice through blockade of NF-kappaB-dependent protective molecules. PLoS ONE. 2007 Jul 4;2(7):e596.

17. Kim SJ, Nian C, Doudet DJ, McIntosh CH. Inhibition of dipeptidyl peptidase IV with sitagliptin (MK0431) prolongs islet graft survival in streptozotocin-induced diabetic mice. Diabetes. 2008 May;57(5):1331-9. Epub 2008 Feb 25.

18. Kobayashi M, Ikegami H, Fujisawa T, Nojima K, Kawabata Y, Noso S, Babaya N, Itoi-Babaya M, Yamaji K, Hiromine Y, Shibata M, Ogihara T. Prevention and treatment of obesity, insulin resistance, and diabetes by bile acid-binding resin. Diabetes. 2007 Jan;56(1):239-47.

19. Liu LF, Purushotham A, Wendel AA, Belury MA. Combined effects of rosiglitazone and conjugated linoleic acid on adiposity, insulin sensitivity, and hepatic steatosis in high-fat-fed mice. Am J Physiol Gastrointest Liver Physiol. 2007 Jun;292(6):G1671-82. Epub 2007 Feb 22.

20. Nakano S, Nagasawa T, Ijiro T, Inada Y, Tamura T, Maruyama K, Kuroda J, Yamazaki Y, Kusama H, Shibata N. Bezafibrate prevents hepatic stellate cell activation and fibrogenesis in a murine steatohepatitis model, and suppresses fibrogenic response induced by transforming growth factor-beta1 in a cultured stellate cell line. Hepatol Res. 2008 Oct;38(10):1026-39. Epub 2008 May 30.

21. Prior RL, Wu X, Gu L, Hager TJ, Hager A, Howard LR. Whole berries versus berry anthocyanins: interactions with dietary fat levels in the C57BL/6J mouse model of obesity. J Agric Food Chem. 2008 Feb 13;56(3):647-53. Epub 2008 Jan 23.

22. Sargeant AM, Rengel RC, Kulp SK, Klein RD, Clinton SK, Wang YC, Chen CS. OSU-HDAC42, a histone deacetylase inhibitor, blocks prostate tumor progression in the transgenic adenocarcinoma of the mouse prostate model. Cancer Res. 2008 May 15;68(10):3999-4009.

Guinea Pig Diets

1. Abdel-Fattah, G. et al. Regulation of guinea pig very low density lipoprotein secretion rates by dietary fat saturation. J. Lipid Res. 36: 1188-1198, 1995.

2. Conde, K., et al. Hypocholesterolemic actions of atorvastatin are associated with alterations on hepatic cholesterol metabolism and lipoprotein composition in the guinea pig. J. Lipid Res. 37: 2372-2382, 1996.

3. Fernandez, M.L. et al. Regulation of guinea pig plasma low density lipoprotein kinetics by dietary fat saturation. J. Lipid Res. 33: 97-109, 1992.

4. Fernandez, M.L. Dietary fiber and mechanisms of plasma LDL lowering. J. Lipid Res. 36: 2394-2404. 1995.

5. Lin, E. C. K., M. L. Fernandez, M.A. Tosca, and D. J. McNamara. Regulation of hepatic LDL metabolism in the guinea pig by dietary fat and cholesterol. J. Lipid Res. 35: 446-457, 1994.

6. Ramjiganesh, T. et al. 2002. Corn Fiber Oil Lowers Plasma Cholesterol by Altering Hepatic Cholesterol Metabolism and Up-Regulating LDL Receptors in Guinea Pigs. J. Nutr. 132: 335–340, 2002.

7. Roy , S. et al. Gender and hormonal status affect the regulation of hepatic cholesterol 7-hydroxylase activity and mRNA abundance by dietary soluble fiber in the guinea pig. Atherosclerosis 163 (2002) 29–37.

8. Vergara-Jimenez, M., K. Conde, S. K. Erickson and M. L. Fernandez. Hypolipidemic mechanisms of pectin and psyllium in guinea pigs fed high fat–sucrose diets: alterations on hepatic cholesterol metabolism. J. Lipid Res. 39: 1455-1465, 1998.

9. West, K. L. et al. 1-[4-[4[(4R,5R)-3,3-Dibutyl-7-(dimethylamino)-2,3,4,5- tetrahydro-4-hydroxy-1,1-dioxido-1-benzothiepin-5-yl]phenoxy]butyl]-4-aza-1-azoniabicyclo[2.2.2]octane Methanesulfonate (SC-435), an Ileal Apical Sodium- Codependent Bile Acid Transporter Inhibitor Alters Hepatic Cholesterol Metabolism and Lowers Plasma Low-Density Lipoprotein-Cholesterol Concentrations in Guinea Pigs. JPET 303:293–299, 2002.

10. Conde, K. et al. Hypocholesterolemic Effects of 3-Hydroxy-3-methylglutaryl Coenzyme A (HMG-CoA) Reductase Inhibitors in the Guinea Pig. Biochemical Pharmacology, Vol. 58, pp. 1209–1219, 1999.

11. Fernandez, M. L., E. C. K. Lin, and D. J. McNamara. Differential effects of saturated fatty acids on low density lipoprotein metabolism in the guinea pig. J. Lipid Res. 33: 1833-1842, 1992.

12. Fernandez, M. L. et al. Psyllium reduces plasma LDL in guinea pigs by altering hepatic cholesterol homeostasis. J. Lipid Res. 36: 1128-1138, 1995.

13. Fernandez, M. L. et al. Gender differences in response to dietary soluble fiber in guinea pigs: effects of pectin, guar gum, and psyllium. J. Lipid Res. 36: 2191-2202, 1995.

14. Fernandez, M. L. Guinea Pigs as Models for Cholesterol and Lipoprotein Metabolism. J. Nutr. 131: 10–20, 2001.

15. Ramjiganesh, T. et al. Corn husk oil lowers plasma LDL cholesterol concentrations by decreasing cholesterol absorption and altering hepatic cholesterol metabolism in guinea pigs. J. Nutr. Biochem. 11:358 –366, 2000.

16. Romero, A. L. et al. The Seeds from Plantago ovata Lower Plasma Lipids by Altering Hepatic and Bile Acid Metabolism in Guinea Pigs. J. Nutr. 132: 1194–1198, 2002.

17. Roy , S., S. Vega-Lopez and M. L. Fernandez. Gender and Hormonal Status Affect the Hypolipidemic Mechanisms of Dietary Soluble Fiber in Guinea Pigs. J. Nutr. 130: 600–607, 2000.

18. West, K. L. et al. SC-435, an ileal apical sodium co-dependent bile acid transporter (ASBT) inhibitor lowers plasma cholesterol and reduces atherosclerosis in guinea pigs. Atherosclerosis 171 (2003) 201–210.

19. Zern, T. L., K. L. West and M. L. Fernandez. Grape Polyphenols Decrease Plasma Triglycerides and Cholesterol Accumulation in the Aorta of Ovariectomized Guinea Pigs. J. Nutr. 133: 2268–2272, 2003.

20. Fernandez, M. L. et al. Hamsters and Guinea Pigs Differ in Their Plasma Lipoprotein Cholesterol Distribution when Fed Diets Varying in Animal Protein, Soluble Fiber, or Cholesterol Content. J. Nutr. 129: 1323–1332, 1999.

21. Fernandez ML, Wilson TA, Conde K, Vergara-Jiminez M & Nicolosi RJ. Hamsters and Guinea Pigs Differ in Their Plasma Lipoprotein Cholesterol Distribution when Fed Diets Varying in Animal Protein, Soluble Fiber, or Cholesterol Content. American Society for Nutritional Sciences. 1999; 0022:1323-1331

22. Vergara-Jiminez M, Conde K, Erickson SK , Fernandez ML. Hypolipidemic mechanisms of pectin and psyllium in guinea pigs fed high fat-sucrose diets: alterations on hepatic cholesterol metabolism. Journal of Lipid Research. 1998; 39:1455-1465

23. Dworakowski R, Dworakowska D, Kocic I, Wirth T, Gruchała M, Kamiński M, Petrusewicz J, Yla-Herttuala S, Rynkiewicz A. Cerivastatin and hypercholesterolemia reduce apoptosis of cardiomyocytes in guinea pig papillary muscle subjected to hypoxia/reoxygenation. Pharmacol Rep. 2006 May-Jun;58(3):420-6.

24. Torres-Gonzalez M, Volek JS, Sharman M, Contois JH, Fernandez ML. Dietary carbohydrate and cholesterol influence the number of particles and distributions of lipoprotein subfractions in guinea pigs. J Nutr Biochem. 2006 Nov;17(11):773-9. Epub 2006 Feb 3.

25. Torres-Gonzalez M, Shrestha S, Sharman M, Freake HC, Volek JS, Fernandez ML. Carbohydrate restriction alters hepatic cholesterol metabolism in guinea pigs fed a hypercholesterolemic diet. J Nutr. 2007 Oct;137(10):2219-23.

 
       
 
Where Nutriphenomics® Begins